当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]1. SI问题的成因SI问题最常见的是反射,我们知道PCB传输线有“特征阻抗”属性,当互连链路中不同部分的“特征阻抗”不匹配时,就会出现反射现象。SI反

1. SI问题的成因

SI问题最常见的是反射,我们知道PCB传输线有“特征阻抗”属性,当互连链路中不同部分的“特征阻抗”不匹配时,就会出现反射现象。

SI反射问题在信号波形上的表征就是:上冲/下冲/振铃 等。

下图所示是一个典型的高速信号互连链路,信号传输路径包括:①发送端芯片(封装与PCB过孔)②子卡PCB走线③子卡连接器④背板PCB走线⑤对侧子卡连接器⑥对侧子卡PCB走线⑦AC耦合电容⑧接收端芯片(封装与PCB过孔)

 


图1 典型高速信号互连链路

可以看出,实际电子产品的高速信号互连链路是比较复杂的,而且通常在不同部件连接点处是会产生阻抗失配的问题、从而造成信号的发射。

高速互连链路常见的阻抗不连续点:

(1) 芯片封装:通常芯片封装基板内的PCB走线线宽会比普通PCB板细很多,阻抗控制不容易;

(2) PCB过孔:PCB过孔通常为容性效应,特征阻抗偏低,PCB设计最应该关注与优化;

(3) 连接器:连接器内铜互连链路的设计要同时受到机械可靠性与电气性能的双重影响,在两者之间寻求平衡;

PCB走线反而一般情况下阻抗控制比其他互连部件更容易,重点关注层叠设计、板材选择,但通常PCB加工板厂的阻抗控制公差为10%,要达到5~8%的阻抗公差控制往往需要花费更高的加工成本。

2. 传输线反射基础理论

当驱动器加信号到传输线时,信号的幅度依赖于驱动器的电压与电阻和传输线阻抗。驱动器上的初始电压通过自身电阻和传输线阻抗的分压来控制。

下图描绘了加在长的传输线上的初始波形,初始的电压Vi传送到传输线上直到到达末端,Vi的幅度通过驱动器电阻和传输线阻抗的分压来决定:

 


图2 信号波形在长传输线的传播

如果传输线的末端端接一个阻抗,而且这个阻抗与线的阻抗精确的匹配,那么幅度为Vi的信号将被端接到地,电压Vi将仍保持在线上直到信号源转换。在这种情况下Vi是dc稳态值。否则,如果传输线的末端的阻抗不是线的特征阻抗,信号的一部分端接到地,信号的其余部分将被反射到传输线回到源。反射回的信号的量通过反射系数决定,反射系数由确定的点的反射电压和输入电压的比决定。这个点定义为传输线上阻抗不连续。阻抗不连续可以是不同特征阻抗的传输线的一部分,也可以是端接电阻或者是到芯片缓冲器上的输入阻抗。

反射系数的计算:

 

其中Z0为传输线标准阻抗,Zt为传输线上某个不连续点的阻抗。

等式假设信号在特征阻抗为Z0的传输线上传送遇到了不连续的阻抗Zt。注意如果Z0=Zt,反射系数为0,意味着没有反射。Z0= Zt这种情况就称为匹配的端接。

如下图所示当输入波形遇到端接Zt,信号的一部分Viρ被反射回源端并且加在输入波形上,整个输入信号波形幅度为Viρ+Vi。反射的部分可能从源产生另一个反射,反射和逆反射一直持续直到传输线稳定。

 


图3 阻抗不匹配情况下的信号反射

当传输线完全匹配、短路、开路时的反射系数如下图所示:

 


图4 (a)端接(b)短路(c)开路 三种情况下的反射系数

在实际应用的互连链路中,理想的传输线是不存在的,也不可能存在完全匹配,因此信号的反射是必然存在的,设计的关键在于如何把互连链路中的各个部件阻抗差距尽量缩小,从而减小反射信号幅度、避免多级反射对信号质量造成致命影响。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭