当前位置:首页 > 嵌入式 > 嵌入式硬件

  0 引言

  A/D转换电路是数据采集系统中的重要部分,也是计算机应用系统中一种重要的功能接口。目前市场上有两种常用的A/D转换芯片,一类是逐次逼近式的,如AD1674,其特点是转换速度较高,功率较低。另一类是双积分式的,如ICL7135,其特点是转换精度高、抗干扰能力强。但高位数的A/D转换器价格相对较高。本文介绍的一种基于单片机的高精度、双积分型A/D转换电路,具有电路体积小、成本低、性价比高、结构简单、调试容易和工作可靠等特点,有很好的实际应用价值。

  1 双积分式ADC基本原理

  双积分式ADC的基本电路如图1所示,运放A 1、R、C用来组成积分器,运放A2作为比较器。电路先对未知的模拟输入电压U1进行固定时间T1的积分,然后转为对标准电压U0进行反向积分,直到积分输出返回起始值,反向积分时间为T0。如图2所示,输入电压U1越大,则反向积分时间越长。整个采样期间,积分电容C上的充电电荷等于放电电荷,因而有由于U0及T1均为常数,因而反向积分时间T0与输入模拟电压U1成正比,此期问单片机的内部计数器计数值与信号电压的大小成正比,此计数值就是U1所对应的数字量。

  2 实用双积分A/D转换电路

  1)硬件电路图

  如图3所示,运放A1、R、C构成积分电路,C常取0.22μF的聚丙烯电容,R常取500kΩ左右,A2是电压跟随器,为电路提供稳定的比较电压,运放 A3作为电压比较器,保证A/D转换电平迅速翻转,CD4051是多路选择开关,单片机P1.0、P1.1、P1.2作为输出端口,控制其地址选择端A、 B、C选择不同的通道输入到积分器A1,U为将要进行A/D转换的模拟输入电压,Uin为积分器的输入电压,U0为比较电压,U1为基准电压,为使A/D 转换结果具有更高的精度,基准电路应该提供精确的电压,建议使用精度为1%的精密电阻,单片机使用89C51,其内部定时器T0为积分电路提供精确的时间定时,计数器T1用来记录反向积分时间,INT0用来检测比较器电平变化。所需测量的模拟输入信号和零点参考电压以及基准电压接到多路选择开关的输入端,通过单片机中的程序控制,轮流选择接入各路输入信号,通过积分电路分别和固定电压进行定时或定值积分。

  积分电路的输出信号作为比较器的输入信号与比较电压进行比较,当比较器输出翻转信号时,CPU计数器停止计数,从而获得零点参考电压的计数值,对这个数据进行处理计算后,完成A/D转换。

  2)转换过程

  为了给积分电路提供积分零点,在系统上电阶段,积分电路先接通GND,待比较器输出为低电平时,再对积分电路进行一段时间的放电,以使得积分电容零电荷。因此双积分电路的工作过程分为三个阶段:

  (1)清零阶段:当比较器输出低电平时,积分电容上聚集了大量电荷,必须对其放电为后续的A/D转换提供精确的零起始点。即对U0进行定值积分,由由此可见放电时间根据U0、U1、R、C具体值而定。

  (2)积分阶段:对模拟输入电压Uin进行固定时间积分,积分时长T1,由A/D的精度决定,精度越高积分时间越长,此阶段积分器的输出电压

  (3)比较阶段:对模拟输入电压进行定时积分后,再对零电平进行反向积分直到比较器的输出发生翻转,此阶段积分器的输出电压为由比较器原理得U10=U1,由此可得

  其中T1、U0、R、C、U1均为常数,即对零电平的积分时间T0与模拟输入电压U成正比,T0即为所求值。具体转换波形如图4所示。

  3)软件设计

  单片机内部定时器T0分别控制对基准电压和模拟电压的定时积分,计数器T1用来记录反向积分时间,P1.0、P1.1、P1.2控制多路选择开关的通道,且单片机以查询方式检测比较器的输出电平。以上分析可知该系统A/D转换流程图如图5所示。

  3 电路特点分析

  由上述分析可知,模拟电压U大于基准电压U1时,在对模拟电压U定时积分后对零电平进行定值积分,波形图如图4所示。而当模拟电压U小于基准电压U1时,在对模拟电压U定时积分后应对U0进行定值积分,只需在软件设计上加以区别或提供负值的基准电压即可。本电路充分利用了单片机成本低廉、可靠性高的优势,主要元件仅仅为一个单片机89C5 1、一个多通道模拟开关CD4051、一个四运放LM324,因而结构简单,性价比高。实际应用表明,此双积分型A/D转换器的特点是工作性能稳定并且抗干扰能力比较强,但从原理分析可知,该电路存在固有的延迟,因此不适合采集连续快速变化的信号。

  4 结束语

  本设计电路保留了双积分A/D转换的主要特点,且整个电路构成的成本非常低廉。只要合理选择、调整电路参数,减少数据处理误差,就可以进一步提高转换精度和速度,且具有转换过程简单、转换精度高和成本低等突出的特点。因此在数据采集系统及其他应用系统中有很好的使用价值。

  本文创新点:本文采用了多路选择开关CD4051实现了积分器输入变量的转换,单片机控制其通道的选择,完成了清零、积分、比较各环节,完成双积分A/D,此电路具有结构简单,成本低廉,稳定性好的特点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭