当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]摘要:介绍基于Windows98平台的DMA虚拟设备驱动程序的开发,并给出了一个简单的DMA虚拟设备驱动程序的开发实例。关键词:直接存储器存取(DMA)方式 虚拟设备驱动程序(VxD)Vt

摘要:介绍基于Windows98平台的DMA虚拟设备驱动程序的开发,并给出了一个简单的DMA虚拟设备驱动程序的开发实例。

关键词:直接存储器存取(DMA)方式 虚拟设备驱动程序(VxD)VtoolsD

直接存储器存取方式不仅具有高速度、高效率的特点,而且CPU资源占用少,因此在需要高速、批量交换数据的场合得到了广泛的应用。在DOS下编写DMA控制程序并不难,但要编制出精美实用的界面则是一件非常繁锁的工作,而且效果往往不佳。Windows自问世以来便以身采取的保护措施使得Windows与硬件直接接口时需要程序员编写专用的虚拟设备驱动程序。针对DMA的 Windows虚拟设备驱动程序并不常见,因为DMA设备对物理地址采取的是直接寻址,要保护正确地寻址相对较困难。作者在开发利用DMA技术实现的高速数据采集系统——核谱获取和高速生理信号采集处理系统时,成功地编写了DMA虚拟设备驱动程序。

1 系统硬件设计

利用DMA技术实现的高速数据采集系统框图如图1所示,该系统采用了ISA总线与PC机接口。当数据通过A/D转换采集进来后,先存储到系统内部的数据缓存SRAM(缓存的地址由两片 74LS393级联产生)中;当数据存满预定的字节数后,系统即向计算机发出DMA申请。DMA控制器在接管总线以后,在没有CPU的干预下,以极快的速度将缓存中的数据经计算机总线送到计算机内存中,再由计算机进行数据分析处理。

2 基于Win98平台的DMA高速数据采集系统的软件设计

软件部分先使用VtoolsD开发出虚拟设备驱动程序(VxD),再以Visual C++6.0为开发工具进行界面设计和数据处理。

虚拟设备驱动程序VxD(Virtual Device Driver)是用来扩展Windows操作系统功能的一类程序。它主要向一般的应用程序(运行于ring3级)提供位于系统底层(ring0级)的服务,解决难于被一般的ring3级的应用程序处理的问题,如对硬件的支持等。VxD可以不受限制地访问所有的硬件设备,可以自由检查操作系统的数据结构,并可以访问一些内存地址。

VDMAD即DMA设备驱动程序,它提供一个虚拟的DMA控制器,使得在 Windows平台上,虚拟机(VM)之间共享DMA成为可能。在DMA方式下传输数据时,DMA控制器从一个物理地址开始,每传送完一个字节,地址自动加1或减1,再顺序存放下一字节的内容,这在客观上要求用于DMA数据传输的内存必须是物理连续的。执行DMA数据传输时,VDMAD自身占用了一块物理连续的内容,此内存便成了VM与DMA通道间交换信息的关键。

专门开发虚拟设备驱动程序的工具以Windows DDK和VtoolsD较著名。前者比较复杂,要求编程者熟悉C语言和汇编语言。VtoolsD较方便、快捷,是专门用于编写虚拟设备驱动(VxD)程序的表格式的开发工具。编程者只要填写了有关的设备名称、版本信息、需求的Windows控制消息之后,VtoolsD就会自生成VxD的程序框架,只需对一些有用的消息增添相应的功能代码,就可以编译成VxD文件,供一般的应用程序调用。这使得程序员可以将精力集中于VxD的功能实现上,而不必去理会其底层细节。这里假设设备名为MYDMA,在填写了相关的信息后,VtoolsD输出三个有用的程序:Madma.h、Mydma.c、Mydma.mak;分别打开Mydma.h和Mydma.c进行代码功能的完善;最后在Visual C++6.0中,通过Mydma.mak文件加载工程,编程生成Mydma.VxD文件;在ring3级程序中即可中通过CreateFile函数进行调用。

3 DMA设备驱动程序的编写

VxD在虚拟化了某个DMA通道后,必须利用VDMAD提供的特殊服务,管理DMA内存缓冲(Buffer)和应用程序内存缓冲(Region)。Buffer是一块在物理地址上连续的内存;Region是一块在线性地址上连续的内存。如前所述,因为DMA只能识别物理地址,从而要求用于DMA传输的内存地址是线性的。这样在DMA传输开始前,选尝试锁定Region以获得其物理地址(因为Buffer是很宝贵的系统资源,只有在必须时才申请它来传输数据)。如果Region不能满足需要或是不连续时,VxD向VDMAD申请一个Buffer用作传输数据的中介。VDMAD控制DMA设备的设备驱动程序,赋给设备要传送数据的逻辑地址、数据长度及传送方向,该设备在没有主机CPU的帮助下将数据移到指定的内容。

这里给出一个简单的开发实例,使用的DMA通道是第3号通道。有过在DOS下 DMA编程经验的人都知道,在允许DMA传输之后,要对其状态寄存器进行查询,或通过对/EOP信号的检测以确定DMA传输完成与否。在此VxD程序中用的是查询现行字节寄存器的方法,此种方法简单易行。当然还可以在DMA传输完成以后,由/EOP信号产生一次中断,通知计算机DMA传输结束;或是用一个 timeout估计传输时间进行计时,计时到即DMA传输结束。部分程序如下:

//Mydma.h头文件

#define MAX_TRANSFER_BYTES //最大传输字节数(自定)

#define MAX_PHYS_ADDR 0xFFF

#define DMA_CHANNEL_NUMBER 3 //使用3号通道

#define READ_DATA 111 //ring3级程序传入的命令码

//模式字定义

#define SINGLE_MODE 0x40 //单字节传输模式

#define INCREMENT_MODE 0x00 //地址加1传输模式

#define WRITEMEM_MODE 0x04 //写传输

......

//Mydma.c文件

//全局变量声明

BOOL hDMA;

PVOID ClientBuffer;

ULONG PhysAddr;

DWORD nBytes;

DWORD nPages;

PVOID DMABufferLinear;

......

BOOL OnSysDynamicDeviceInit( )

{

//虚拟化通道3

hDMA=VDMAD_Virtualize_Channel(DMA_CHANNEL_NUMBER,NULL,NULL);

if (hDMA = =0)

{

}

return FALSE;

}

else

return TRUE;

}

BOOL OnSysDynamicDeviceExit( )

{

if (hDMA)

VDMAD_Unvirtualize_Channel(hDMA);

return TRUE;

}

DWORD OnW32Deviceiocontrol(PIOCTLPARAMS p)

{

BOOL status;

DWORD count;

//局部变量定义

VMHANDLE hVM=Get_Cur_VM_Handle( );

Switch (p->dioc_IOCtlCode)

{

case DIOC_OPEN://ring3级程序调用

CreateFile函数打开VxD文件

......//进行简单处理即可

case DIOC_CLOSEHANDLE://当ring3级程序调用CloseHandle函数时

...... //简单处理即可

case READ_DATA: //命令码传入

...... //对一变量进行赋值

status=VDMAD_Lock_DMA_Region(ClientBuffer,nBytes,0,&MaxLockable,&PhysAddr,&error);

if (status ==0) //region锁定失败,申请buffer

{

nPages =......

status=PageAllocate(nPages,PG_SYS,0,0xF,0,MAX_PHYS_ADDR,&PhysAddr,PAGE CONTIG PHGEFIXED PAGEUSEALLGN,&hMem,&DMABufferLinear);

if (status = =FALSE)

{

return DIOC_FAILURE;

}

......

}

VDMAD_Phys_Mask_Channel(hDMA) //屏蔽DMA通道

VDMAD_Set_Region_Info(hDMA,bufID,TRUE,bUsingDMABuffer?DMABufferLinear:ClientBuffer,nBytes,(PVOID)PhysAddr);

VDMAD_Set_Phys_State(hDMA,hVM,SINGLE_MODE WRITEMEM_MODE INCRE-MENT_MODE); //写DMA模式寄存器

VDMAD_UnMask_Channel(hVM,hDMA); //允许DMA传输

while(count!=0x0) //查询DMA现行字节计数器,等待DMA传输完毕

{

Count=VDMAD_Get_Phys_Count(hDMA);

}

...... //作些结束处理

default:

return 1; //调用失败

}

}

4 VxD的调用示例

//在ring3级中调用VxD的方法

HANDLE hVxD

HVxD=CreateFile (\\.\mydma3.vxd,0,0,0,CREATE_NEW,FILE_FLAG_SELETE_ON_CLOSE,0); 打开设备文件

//DeviceIoControl函数用法,其中pVal为预留的内存,bighytes为ring3级程序传递给VxD的数据缓冲字节数。

DeviceIoControl (hVxD,READ_DATA,pVal,bigbytes,NULL,

0,&nbytes,0)

采用DMA技术传输数据较之查询、中断方式,无论在速度上还是数据传输量的大小上都优越得多。尤其在Windows98下虚拟设备驱动程序的开发,使得整个系统的图文界面更加美观,操作更加方便、灵活,大大缩短了开发周期,提高了效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭