当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]传统的光纤检测系统大都是基于MCU架构来实现的,虽然MCU系统或DSP处理器在数字信号处理方面功能强大,但难以完成大量实时数据的采集,因采样点少带来的测量误差会累积到测试

传统的光纤检测系统大都是基于MCU架构来实现的,虽然MCU系统或DSP处理器在数字信号处理方面功能强大,但难以完成大量实时数据的采集,因采样点少带来的测量误差会累积到测试结果。本设计基于光纤系统的检测原理,设计一种快速光纤检测系统。数据采集系统采用FPGA做数据处理,可以实现高速实时数据的采集。

光纤通信是用光纤作为传输介质,以光波作为载波来实现信息传输,从而达到通信目的的一种新通信技术。与传统的电气通信相比,光纤传感技术具有精度和灵敏度高、抗电磁干扰、寿命长、耐腐蚀、成本低、光纤传输损耗极低,传输距离远等突出优点。

虽然光纤通信具有以上突出的优点,但本身存在的缺陷也不容忽视,比如:光纤的质地脆,容易断裂、机械强度差,弯曲不能过小;供电困难;分路、耦合不灵活;光纤的切断和连接需要特定的工具或设备等。城建施工、洪水侵袭、人为破坏、地壳运动等人为行为或者天灾的破坏,都很容易造成光纤线路的故障。如何有效地保证光纤通信系统的可靠性,一直是一个有待解决的技术难题。本设计在光纤通信的基础之上,通过对光纤通信监测系统的可靠性进行研究。以FPGA代替传统的MCU架构完成数据的采集和处理,能完成高速的实时数据采集,测量误差小,工作可靠性高。

1 光纤通信系统的测量原理

目前的光纤测量中,主要是要测量光纤的损耗和断点。主要基于瑞利散射和菲涅尔反射两种光学现象来进行测量。瑞利散射是光纤材料本身固有的性质,由于光纤内部含有的杂质、纤核添加物等产生漫反射,其中部分向后散射形成瑞利背向散射,光纤整个长度上都呈现这种现象。而菲涅尔反射它只是发生在光纤接触到空气时或发生在诸如机械的连接接缝处。因此,光纤损耗的测量所依据的主要是瑞利散射原理;光纤断点的测量所依据的主要原理是菲涅尔反射。

瑞利散射损耗可用下式进行近似计算:

 

式(1)中,λ以um为单位,A、B是与石英和掺杂材料有关的常数。

菲涅尔反射光的信号强度与反射面状况和传输光的功率相关。对于来自光纤上L点处的菲涅尔反射光,在光纤注入端测得的光功率Pf(L)为:

 

以上公式中,L为菲涅尔反射处距离光注入端的距离,R为光纤中L处的功率反射系数,P0为注入光纤的峰值功率,β为光纤衰减常数。

2 硬件设计

如图1所示为系统硬件设计原理图。由脉冲器产生的电脉冲,驱动光源模块产生光脉冲,经方向耦合器射入待测光纤。射入光纤的光脉冲,由于光纤材料本身固有的性质会产生瑞利散射光,连同遇到不平整光纤端面会产生菲涅尔反射光,一起反射回方向耦合器、射至光电二极管,转换成电脉冲。转换后的电信号经由放大器和 A/D转换处理后送入数据处理模块,由于此项反射光强度微弱,故需反复传送、收集并进行放大和平均处理。OTDR利用其激光光源向被测光纤反复发送光脉冲来实现测量。

 

2.1 数据采集与处理模块

数据采集与处理模块主要包括主控制器FPGA、AD转换器及 SRAM存储器;主要完成对实时数据的采集与处理。本设计采用FPGA芯片为EP3C35Q240C8共有240个引脚,分为8个bank,分布于芯片的四周,但是并非全部的引脚都是可以随意使用的,只有是L/O接口的引脚才是芯片内部可分配。这些接口用来提供给复位,ADC芯片和SDRAM数据存储和控制信号。

当一个设计完成后,需要把设计下载到FPGA中运行以进行调试及应用。FPGA有多种下载配置模式,本设计主要采用AS模式。

AS模式是将下载文件先放在外挂的加载芯片中,每次上电后FPGA会自动从加载芯片中调用加载信息,然后存到FPGA的SRAM中去,对FPGA进行配置。当设计完成,调试无误时,应当用此模式进行FPGA的配置。

AS下载需要AS配置芯片。本设计采用的存储器为EPCS16,它与FPGA的接口为4个信号:DCLK为串行时钟输入;ASDI为控制信号输入;nCS为片选信号;DATA为串行数据输出。AS模式下载电路实现原理图如图2所示。

 

2.2 数据收发模块

数据收发模块主要功能是发送一个光脉冲信号,经过耦合器耦合后注入待测光纤,由待测光纤反射回来的反射光再送入数据采集和处理模块。

具体实现过程:首先FPGA产生一个脉冲信号,经过脉冲放大器放大后,再连接到光电器,转换成特定波长的光脉冲,将光脉冲注入待测光纤,这时会产生瑞利散射和菲涅尔反射,再由耦合器的输出端送入光电探测器,将光信号转换成电信号,随后送入到运算放大器进行放大后送入数据采集与处理模块。图3所示为脉冲放大电路,主要实现对脉冲信号进行放大处理。

 

如图3所示TPS2817为单通道高速MOSFET驱动器,可以提供高达2 A的峰值电流,可达纳秒级的开关速度,输入回路中包括了有源上拉电路,采用集电极开路方式驱动MOS管。电源电压最大为30 V,电源电压最小为2.75 V;当输入的脉冲信号接入输入端口IN,TPS2817相当于一个功率驱动器,可将脉冲信号进行功率放大。

3 测试结果及分析

首先检测系统发射一个光脉冲信号,这个光脉冲在遇到断点、接头、熔接点以后会反射回来,如果检测系统能够精确地测量回波时间,就可以利用下面的公式计算出距离L。

其中,c为光速,t为光脉冲从发射到接收的总时间,称为回波时间,f为采样率,N为总采样点数,[!--empirenews.page--]

 

n为待测光纤的折射率。测试结果如下:横坐标表示待测光纤的长度,纵坐标代表测量反射光得到的相对光功率。整个光纤网的故障可分为反射事件和非反射事件。

光纤中的熔接头和微弯都会带来损耗,但不会引起反射。在测量结果曲线上,这两种事件会以在背向散射电平上附加一下突然的下降台阶的形式表现出来。那么在竖轴上的改变即为某一事件的损耗大小。

 

活动连接器,机械接头和光纤中的折裂都会同时引起损耗和反射。损耗的大小同样是由背向电平值的改变量来决定。反射值(通常以回波损耗的形式表示)是由背向散射上反射峰的幅度所决定的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭