当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]摘要:本文在分析实时嵌入式系统mc/os-ii和lpc2119芯片的基础上,对mc/os-ii向处理器上移植前需要了解的知识和需要做的前期准备工作进行了分析和讨论,最后给出了移植的具体

摘要:本文在分析实时嵌入式系统mc/os-ii和lpc2119芯片的基础上,对mc/os-ii向处理器上移植前需要了解的知识和需要做的前期准备工作进行了分析和讨论,最后给出了移植的具体工作。论文着重分析了mc/os-ii的移植。
  c/os-ii是一个完整的,可移植、可固化、可裁减的占先式实时多任务内核,它功能强大,支持56个用户任务,支持信号量、邮箱、消息队列等多种常用的进程间通信机制。公开源代码,程序可读性强、移植性好,同时可免费获得。

  lpc2119是由philips生产的一款32位arm7tdmi-s微处理器,其核心为高性能的32位risc体系结构,并具有高密度的16位指令集和极低的功耗。具有零等待128k字节的片内flash,16k的sram,无需扩展存储器,使系统更为简单、可靠。


  本文主要讨论?c/os-ii在lpc2119上的移植,同时对移植前需要掌握的基本知识进行了分析,特别是对与移植密切相关的三个文件进行了详细分析,还对用到的芯片的重映射概念进行了详细说明。lpc2119简介

  lpc2119片上资源除了上面介绍的存储器外,还有2个uart、高速i2c接口、2个spi接口、6路输出的pwm单元、4路10位ad转换器、2个32位定时器、2个can通道、实时时钟及看门狗等,通过片内pll可实现最大为60mhz的cpu操作频率。

  由于下文启动代码的编写要用到重映射(remap)的概念,lpc2119以及其它系列的芯片如at91等也都有重映射的功能,所以在此加以说明对其它arm芯片的学习具有借鉴作用。


  当系统上电后,程序将自动从0地址处开始执行,因此在系统的初始状态,要求0地址处的存储器是非易性的rom或flash等。但是rom或flash的访问速度相对较慢,每次中断发生后,都要从读取rom或flash上的向量表开始,影响了中断响应速度。因此,lpc2119提供一种灵活的地址重映射方法,该方法可以将内部ram的地址重新映射到0x0的位置。在系统执行重映射命令之前,需要将flash中的中断向量代码拷贝到内部ram中。这样在重映射命令执行之后相当于从内部ram中0x0的位置找到中断向量,而实际上是将ram的起始地址0x40000000映射为0x0了。这样,中断执行时相当于在ram中找到对应中断向量,实现异常处理调试。?c/os-ii的介绍

  ?c/os-ii实际上是一个嵌入式操作系统内核,内核提供的基本服务就是任务切换。在?c/os-ii中,为每个任务分配专门的堆栈空间。?c/os-ii进行任务切换的时候,会把当前任务的cpu寄存器放到此任务的堆栈中,然后再从另一个任务的堆栈中恢复原来的工作寄存器,继续运行另一个任务。所以,寄存器的入栈和出栈是?c/os-ii多任务调度的基础。

  与处理器相关的代码只有三个文件,一般移植的时候只要修改这三个文件就可以了。编写启动代码

  启动代码是芯片复位后进入c语言的main()函数前执行的一段代码,主要是为运行c语言程序提供基本运行环境,如初始化外围部件、存储器系统等。因此启动代码的功能有些类似pc机中的bios和vxworks中的bootloader。由于飞利浦未提供该芯片的启动代码,所以需要自己编写启动代码。

  启动代码可以划分为五个文件:startup.s、irq.s、stack.s、heap.s和target.c。startup.s包含了前面提到的异常向量表和系统初始化代码,一般无需改动;irq.s包含中断服务程序与c程序的接口代码,可根据实际使用的中断情况进行少量修改;stack.s和heap.s保存c语言使用的堆和栈的开始位置;target.c包含目标板特殊的代码,包括异常处理程序和目标板初始化程序,可根据程序的需要修改。

  由于启动代码的编写很长,而本文只是想指出编写启动代码是移植前必须做的准备工作并对其进行简要说明,因此在这里就不具体列出所有代码(具体的启动代码见参考文献[1]),而给出一个很重要的目标板初始化程序中的函数targetresetinit()的流程图,从中可以看出在进入main()函数前对系统进行的基本初始化工作的具体步骤。移植

  有了上面的知识和编写启动代码这项准备工作完成后,就可以进入具体移植阶段了。主要完成以下工作:
① 为了增强代码的可移植性,所有c文件添加头文件includes.h。
② 用户程序添加config.h。
③ 在文件os_cpu.h中需要添加或修改的主要代码有:
? 定义不依赖于编译器的数据类型:
typedef unsigned char?? int8u;
typedef unsigned short? int16u;
typedef unsigned int??? int32u;
typedef int32u?????? os_stk;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭