当前位置:首页 > 嵌入式 > 嵌入式硬件

引言  随着嵌入式系统的发展,迫切需要在嵌入式系统开发阶段对嵌入式系统进行离线测试与分析,以保证系统的软件应用程序、硬件具有兼容性、高可靠性和高可用性,迅速发现并准确定位系统中存在的问题。本文结合上海贝尔阿尔卡特股份有限公司开发的宽带交换系统,讨论离线单板硬件测试方法和系统测试方法。  离线单板硬件测试概述  在宽带交换机系统中,离线测试包括自检测试和一般的离线测试。自检测试是单板初始化完成后为了保证板子的正确运转进行的测试。它主要包括看门狗测试、快速硬件器件测试和下载通路测试。快速硬件测试完成寄存器测试和单板上单个硬件设备测试,其中又包括许多测试项。如果某一测试项测试失败,整个测试就会停止直到看门狗超时重启系统。下载测试是为了保证软件下载功能能正常工作而进行的测试。这项测试主要完成通信接口收发数据测试、中断功能测试。而一般的离线测试是在出厂检验、开发阶段中的检测和维修诊断时对上述的各测试项进行更具体的测试,以定位单板上的出错位置。  看门狗测试  在做任何一项硬件测试之前必须完成看门狗测试。这是因为一项硬件测试失败之后需要重启系统,而硬件测试的失败通常是以看门狗超时为判断条件的。这就需要看门狗在硬件测试时能正常工作。看门狗测试方法是设置并激活一个1秒的看门狗,等待1秒后系统重启。  flash测试  在flash中可存放程序,也可以存放数据。在烧录flash时,可存放预先计算好的checksum值。要测试flash时,程序重新计算checksum,然后与预先存放的值进行比较。  数据flash的测试方法有两种。一种是非破坏性的基本测试,主要是checksum测试。另一种是破坏性的扩展测试,包括读写测试和地址/数据总线测试,具体方法与内存测试一致。基本测试可在系统自检时使用,扩展测试可在维修诊断时采用。  内存测试  内存测试可分为三类:  1. 数据总线测试: 将0001循环左移并写入内存,然后读出并比较测试。  2. 内存区测试: 对内存所有存储单元进行读写测试(读写5555h和aaaah测试)。  3. 地址总线测试:对内存所有存储单元进行地址累加测试。从ram的基地址起,在每一个存储单元(按照总线宽度)中写入不同的值(递增值),地址递增,直至所有的存储单元都保存不同的内容,然后读出并进行检验。  地址总线测试还可采用快速测试的方法:对0x1地址的内存单元写入地址值0x1,地址值循环左移,依次将相应的地址值写入相应的内存地址,最后检验。  在本文的系统中,自检测试时只包括内存区测试。并且,由于测试时间的限制,只是随机选择内存的一些页面进行读写测试。对于其它的内存测试方法,可以用于出厂检验、开发阶段中的检测和维修诊断。  主控芯片测试  主控芯片测试主要是对主控芯片进行定时器测试、寄存器测试、中断测试和片内ram测试。寄存器测试是对一些特殊寄存器的功能进行测试,以验证cpu寄存器是否能正常工作。中断测试是人为产生一些硬件中断,检测主控芯片对中断的反应,是否能及时标志中断寄存器的相应标志位。片内内存测试则遵循一般内存测试规则。  pld/fpga简单测试  在宽带交换机系统中,较大的fpga常实现较复杂的功能。在测试时要对相关的功能进行详细的功能测试。而对于其它简单的小型pld/fpga则寻求自测的方法,在pld或fpga的编制过程中,适当的加入一些自测手段。当主控芯片要测试它们时,设置和读取相应的pld或fpga的测试接口,从而获得测试结果。  pci总线测试  pci总线常用于连接处理器和各类外设。它提供了一个低时延路径,使处理器能够直接存取任何映射在存储器或i/o地址空间的pci设备。它还提供一个高带宽路径,允许pci主设备直接到主存储器存取。测试方法是先测试是否能正确读写pci配置空间寄存器,然后测试内存映射是否可以在两端正确读写。  嵌入式系统离线测试方法  增量测试模型  在单板测试完成后,系统集成在一起之后有可能仍不能正常工作。主要原因是,模块相互调用时接口会引入许多新问题。例如,数据经过接口可能丢失;一个模块对另一模块可能造成不应有的影响;模块之间的硬件连接不正确也可能造成通信不畅;误差不断积累达到不可接受的程度等等。所以需要通过综合测试来发现各种错误。  如果把所有模块按设计要求一次全部组装起来,然后直接运行系统软件,这称为非增量式集成。这种方法易出现混乱,在改正一个错误时又可能引入新的错误,新旧错误混杂,更难断定出错的原因和位置。增量式集成方法通过测试软

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭