当前位置:首页 > 嵌入式 > 嵌入式硬件

  简介

  该项目介绍了如何使用PIC单片机的数字电压表。一个HD44780的基于字符的LCD用于显示被测电压。在这个项目中使用的是PIC单片机PIC16F688,有12个I / O引脚可以作为内置10位ADC的模拟输入通道,其中8。要测量的电压被馈送到8个模拟通道之一。选择AD转换的参考电压是电源电压VDD(+5 V),。在输入端使用一个电阻分压器网络是映射到ADC的输入电压范围(0-5 V)输入电压范围。该技术是表现为输入电压范围从0-20 V,但它可以进一步扩展与选择适当的电阻和做的数学描述如下。

  电路图

  由于PIC端口不能直接输入20V,输入电压成比例下降,使用一个简单的电阻分压器网络。电阻R1和R2的规模下的输入电压范围从0 - 20V ,0 - 5V,适用于PIC16F688的模拟输入通道,AN2的。在端口引脚AN2和地面之间的并行连接一个5.1V的齐纳二极管提供保护的情况下的PIC针20V输入电压不小心超出。液晶显示器是在4位模式下,连接的ICSP头,你可以重新编程和测试PIC,而它在电路使固件的开发更容易。当你满意,并希望从实验电路板的电路转移到PCB上或通用的原型板,你?需要的ICSP头。实验板的电路图和内置的原型如下所示。

  重要事项 :您需要受规管的+5 V电源的输出精度 。ADC使用VDD转换参考,并完成所有的计算与VDD = 5V。你可以得到一个稳压+5 V,使用一个LM7805线性稳压器IC 。

  

  从LM7805 IC获得+5 V的受规管

  

关键字:数字电压表 PIC16F68 可变功率测试将DVM的供应来源

  ADC的数学的准确性取决于在输入端的电阻的精度和稳定的参考电压,VDD = 5 V。我发现,VDD是稳定的,以5.02五,我测R1和R2,和它们的值是1267和3890欧姆 。因此,这给了5.02 V模拟的I / P ---> 0-1023数字计数 =>分辨率=(5.02 - 0)/(1023-0)= 0.004907 V /计数

  VA = 1267 * VIN /(1267 3890)= 0.2457 *输入电压

  =>我/ P电压= 4.07 * VA = 4.07 *数字计数* 0.004907

  = 0.01997 *数字计数

  = 0.02 *数字计数(约)

  为了避免浮点运算,使用的I / P电压= 2 *计数。

  例如,假设VIN = 7.6V。然后,

  VA = 0.2457 *输入电压为1.87V

  =>数码计数= 1.87/0.004907 = 381

  =>计算的I / P电压= 2 * 381 = 0762 = 07.6V(4位产品的前3位数字 )

  固件

  固件写入和mikroC编译器编译。LCD_D6的代码是在这里。

  SBIT LCD_D7 RC3_bit;

  在TRISC4_bit SBIT LCD_RS_Direction;

  TRISC5_bit SBIT LCD_EN_Direction;

  TRISC0_bit SBIT LCD_D4_Direction;

  TRISC1_bit SBIT LCD_D5_Direction;

  TRISC2_bit SBIT LCD_D6_Direction;

  SBIT TRISC3_bit LCD_D7_Direction;

  / /高端液晶模块的连接

  字符Message1 [] =“DVM项目“;

  unsigned int类型ADC_Value,DisplayVolt;

  CHAR *伏=“00.0”;

  无效的主要(){

  :ANSEL = 0b00000100; / / RA2/AN2是模拟输入

  ADCON0的= 0b00001000; / /模拟输入通道选择AN2的

  ADCON1 = 0X00;

  CMCON0 =为0x07; / / Disbale比较

  TRISC = 0b00000000; / / PORTC的所有输出

  TRISA = 0b00001100; / / PORTA所有输出,除RA3和RA2的

  Lcd_Init(); / /初始化液晶

  Lcd_Cmd(_LCD_CLEAR); / /清除显示

  Lcd_Cmd(_LCD_CURSOR_OFF) / /游标关闭

  Lcd_Out(1,1 Message1);

  Lcd_Chr(2,10,“V”);

  {

  ADC_Value = ADC_Read(2)

  DisplayVolt = ADC_Value * 2;

  伏[0] = DisplayVolt/1000 + 48 ; ;

  伏[1] =(DisplayVolt/100)%10 + 48;

  伏[3] =(DisplayVolt/10)10%+ 48;

  Lcd_Out(2.5伏);

  delay_ms(100);

  }(1) ;

  }

  输出

关键字:数字电压表 PIC16F68

DVM是测试各种不同的输入电压范围从0-20 V的发现是非常准确的。在这里测试的一些快照。

  

  

  

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭