当前位置:首页 > 嵌入式 > 嵌入式硬件

1 引言

新型双绕组感应发电机定子嵌有两套极数相同的绕组,一套为功率绕组,输出端接励磁电容、整流器负载:另一套为控制绕组,接励磁变换器,可为发电系统连续调节励磁,保持功率绕组输出电压不变。

双绕组感应发电机系统的数学仿真包括发电机、功率半导体、控制器、测量装置等多个数学模型。连续系统的数学仿真保证积分误差处于规定范围内,常采用动态调节仿真步长的方法提高仿真速度。在该发电系统的实时控制中,控制程序通常运行在DSP等嵌入式器件上,在固定的时钟周期内完成控制程序,并对执行元件-功率半导体发出控制信号,这样就存在诸如中断延时、执行时间、硬件接口、测量误差等瓶颈问题。解决上述问题的方法是将双绕组感应发电机、功率半导体、传感器等接入仿真回路,仿真系统按照实际时间工作,即可满足实时性要求。这种半实物仿真形式也称为快速控制原型。

本文提出一种基于dSPACE单板系统DS1104试验平台的离散事件励磁变换器系统与连续时间双绕组发电机系统解耦的实时仿真方法,建立相应的试验模型,并对一台双绕组感应发电机系统进行试验研究。

2 励磁系统的控制策略

当双绕组感应发电机转速或负载发生变化时,应保持输出电压恒定,需要调节电机的励磁无功,同时调节控制绕组侧励磁变换器直流侧电容的有功功率。本文采用控制绕组定子磁场定向控制策略,双绕组发电系统励磁控制原理图如图1所示。

整个系统控制分为两个闭环,其中将功率绕组整流桥输出端检测的输出电压Upd与所给参考电压Updref相比较得到误差信号,经PI调节器控制后得到参考无功电流分量给定值i*sd,来补偿控制电机所需励磁无功;根据控制绕组励磁变换器直流侧电容的电压检测值Ucd与所给参考电压给定值Ucdref相比较所得的误差信号,经PI调节器控制后乘以系数-1可得到参考有功电流分量给定值i*sq,来补偿控制电容Cc所需有功功率,其中系数-1表示有功是从电机流向励磁变换器。

3 实时系统硬件设计

dSPACE实时仿真系统是基于Matlab/Simulink的控制系统开发及测试平台,与Matlab/Simulink完全无缝连接。本文采用的单板系统DS1104是由主处理器、辅助DSP、中断控制器、储存器、计时器以及主机接口等部分组成。DS1104控制器板使用Pow- erPC处理器进行浮点运算,其主频为250 MHz,运算能力强。DS1104控制器板还集成了TMS320F240DSP为核心的I/O子系统,满足特殊的I/O要求。

dSPACE软件系统由算法开发模块、实时运行模块以及实时测试监控模块3部分组成。基于dSPACE的双绕组发电机控制系统开发包括:

(1)LAB/Simulink模型建立及离线仿真。利用Matlab/Simulink建立双绕组感应发电机仿真对象的数学模型,设计控制方案,并对系统离线仿真。
(2)I/O的接入。Matlab/Simulink中保留需要下载至SPACE的模块,利用硬件接口关系代替原逻辑连接关系,配置I/O,设置软硬件中断优先级。
(3)利用RTW和dSPACE提供的工具自动生成代码并下载,将模型转换为实时仿真机可运行的程序。
(4)dSPACE综合实验和调试。利用ControlDesk获取实时仿真数据。

功能强大的实时代码能实现软件RTI与界面友好的试验软件ControlD-esk,可快速建立双绕组感应发电机实时控制系统平台。系统硬件连接原理图如图2所示。硬件电路包括由励磁变换器、发电机、整流型负载组成的主回路,而以DS1104为核心的控制回路包含定子双绕组电压、电流检测,直流母线电压的检测电路和保护电路等。

本系统设计含有10路A/D采样电路,该A/D采样电路用于采样控制侧母线电流电压、控制侧两相电流(三相中只有两相电流是独立的)、功率侧两相电流电压以及功率侧母线电流电压等。选择其中所需的采样通过同轴电缆分别与DS1104的8个ADC单元相连,主要包括:控制侧电流检测、功率侧电流检测、控制侧电压检测、功率侧电压检测。

另外,采用复杂可编程逻辑器件(CPLD)综合处理故障信号。本系统设计含有16个保护信号输入,经过“相与”后产生一个FAULT信号输入至DS1104控制器板的主处理器,主处理器产生硬件中断信号,使程序在Matlab软件中停止运行,同时,还输出一个BRAKE信号在控制平台硬件上直接关闭PWM信号,实现实验平台的双重保护。这16个保护信号经过处理后输出14个低电平有效的显示信号,使对应的LED发光报警。

该控制方案在一台由三相感应电动机自行改制的1 500 rpm,900 W的小样机全数字控制平台上进行验证,设计PI可调的实时仿真界面。控制器系统周期为80μs,数字滞环的宽为0.5 A。

4 试验研究

4.1 系统自励建压

采用105μF的自励电容自励建压,当功率侧直流电压达到120 V时即转入控制绕组磁场定向矢量控制,在额定转速空载下的自励建压试验波形如图3所示。

图3额定转速空载下的自励建压试验波形图

由于整流桥直流输出侧采用较大的滤波电容,图3所示的功率侧直流电压在建压稳定后始终是平直光滑的,几乎没有较大波动。

4.2 励磁电容C=105μF额定负载时的变速过程

系统带额定负载时,转速从1 500 rpm快速增加至2 000 rpm,此过程采用控制绕组的电压定向控制策略,功率侧直流电压上升至9 V,约为5.6%,如图4所示。

额定负载时变速的控制绕组电压电流的波形如图5所示。额定负载运行时,控制绕组线电流滞后于线电压约120°(相电流滞后于相电压约90°),由于电压电流参考方向是按照电动机惯例,此时控制绕组励磁变换器具有电容作用,向发电机提供所需无功,满载运行时,由于去磁效应,励磁电容不能提供发电机所需的无功,此时需要控制绕组补偿,且随着转速的升高,发电机所需无功下降,控制绕组的电流越来越小,符合电机转速升高弱磁原理。

5 结束语

本文采用dSPACE单板系统DS1104试验平台的离散事件逆变器系统与连续时间发电机系统解耦的实时仿真方法,将双绕组感应发电机-逆变器-传感器取代数学模型,直接置入仿真回路,进行半实物仿真研究,内容包括:系统建压、额定负载的变速运行等,研究结果表明,将dSPACE应用于双绕组感应发电系统中,有利于缩短开发周期,降低开发成本,提高系统运行的可靠性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭