当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]为什么添加多个处理单元和内存后会引发那么多问题。

  为什么添加多个处理单元和内存后会引发那么多问题。

  单颗芯片或一个封装内集成了各种各样的处理器和本地内存,使得对这些器件的测试盒验证变得愈加困难,并且无法充满信心地签核它们。

  除了传统的时序和时钟域交叉问题之外,在AI、机器学习或深度学习类等新型复杂芯片中还有一些越来越难以处理的问题。这类器件可以训练应用于特定用例的数据,从而学习独特的行为模式。在汽车或物联网等设计中的一些芯片还包括在线升级功能。

  “异构计算在很多地方都有应用,包括人工智能、机器学习、5G、传感器融合和高性能计算,”OneSpin Solutions总裁兼首席执行官Raik Brinkmann说。 “现在可以通过云的方式把新的算法映射到硬件中。但是,如果不解决延迟、性能和功耗问题,云计算的应用也会受限。除了功能安全性之外,您还会遇到IC完整性问题。所以,当前最大的问题是如何在设计流程中解决所有这些问题。您是在某个可编程结构上实现它还是使用异构平台实现它?当您验证自己的设计目标时,是进行自下而上的指标分析,还是采用自上而下的方法?能不能保证足够的代码覆盖率。”

  所有这些变化都带来了一系列新的挑战。验证和测试对象不再是单个计算组件和内存,而是开始包含越来越多的可编程硬件、不具备可编程能力的硬件、固件以及影响面覆盖从安全性到控制逻辑在内的所有指标的复杂软件栈。

  “我们以前从来没有见过这么大规模的异构设计,”Cadence营销总监Adam Sherer说。“你的计算环境本身就是异构的,分析对象又是异构设计。现在你需要应对各种不同内存、人工智能和机器学习参数、包括传统IP在内的大量IP系列、拥有全新特征的多个处理器。使用UVM测试模式进行直接模拟的方法不再奏效了。”

  有时需要使用不同的工具,但是真正的挑战却在于方法和流程,以及为了实现充分覆盖需要花费多少时间和精力。

  “我们发现,目前的测试方案正在向严格定义了区间的系统级测试转变,”Sherer说。 “问题在于你无法真正复现现实世界的环境。还有一种替代方法是,通过压缩测试功能,降低测试规模,以保证可以在限定的时间窗口内完成这些测试。”

  因为很多芯片只是作为更大系统的一部分运行,所以它们之间还存在接口相关的问题。

  为了处理各种特定类型的数据,芯片中集成了各类加速器和内存,使得加快验证过程变得愈发艰难了。在面向数据中心训练、人工智能、机器学习和深度学习等应用的芯片中,这种集成各种加速器和内存的方法变得越来越普遍,同时,该方法也逐渐渗透到汽车等安全关键市场以及数据中心和边缘计算中使用的各种芯片的设计上。

  这些芯片可能非常庞大而且复杂,还可能存在重大的延迟问题。验证过程需要尽可能早开始,因为随着设计流程的进行,工程师需要识别越来越多潜在的交互,使用一些可能并不十分熟悉的模型。

  Marvell服务器处理器业务部门副总裁Gopal Hegde表示:“过去我们设计芯片时,总是把它划分成CPU内核和内存子系统。这些都是标准组件,我们总是关注必须支持哪些接口这类问题。但是现在地址空间大得多了,如何设计流水线,信号路径通过外部结构时对延迟有哪些影响都在考虑之列了。”

  片外加速器和存储器有多种互连标准,但是很难同时支持所有这些标准。

  “业界需要在标准化的接口上实现更好的数据流动,”Hegde说。 “我们有Gen-Z和CCIX(加速器的缓存一致性接口),我们真的很想只支持一个统一的接口,但是现在还有Gen5 PCIe,接口的统一显然很难实现了。”

  还有一些报道点出了其它类似的挑战。“我们正在推出7nm芯片,”eSilicon营销副总裁Mike Gianfagna表示。“我们主要的关注层面是互操作性、系统级别的验证、IP的特点以及芯片在不同电压水平上的特性。”

  为了解决这个问题,eSilicon为AI、网络通信和交换开发了IP“平台”。“这是一组我们知道可以协同工作的IP,”Gianfagna说。 “我们还针对金属栈层开发了相应平台,以确保器件的可测试性、工作电压范围和可靠性。所有IP都可以使用相同的金属栈层,添加的所有第三方IP也可以使用金属栈层平台。通过这种方式,可以解决互操作性问题。我们认为这是未来的发展方向,您肯定需要可以和其它所有要素互操作的最佳IP。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭