当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]GPIO共有8中设置模式:输入浮空、输入上拉、输入下拉、模拟输入、开漏输出、推挽式输出、推挽式复用功能,开漏复用功能,共4种输入,2种输入,2种复用功能。

1、STM32的GPIO结构图

GPIO共有8中设置模式:输入浮空、输入上拉、输入下拉、模拟输入、开漏输出、推挽式输出、推挽式复用功能,开漏复用功能,共4种输入,2种输入,2种复用功能。

2、模式说明

①浮空输入

图中施密特触发器是开启的,IO口的状态可以直接送到输入寄存器中,CPU可以直接读取输入寄存器;

在上图中,阴影的部分处于不工作状态,尤其是下半部分的输出电路,实际上是与端口处于隔离状态。

黄色的高亮部分显示了数据传输通道,外部的电平信号通过左边编号1的IO端口进入STM32,经过编号2的施密特触发器的整形送入编号3的输入数据寄存器,在输入数据寄存器的另一端编号4,CPU可以随时读出IO端口的电平状态。

②上拉输入

STM32的GPIO带上拉输入模式的配置。与前面的浮空输入模式相比,仅仅是在数据通道上部,接入了一个上拉电阻,根据STM32的数据手册,这个上拉电阻阻值介于30K~50K。

同样,CPU可以随时在输入数据寄存器的另一端,读出IO端口的电平状态。

③下拉输入

④模拟输入

施密特触发器是关闭的,信号直接到ADC输入;

STM32的模拟输入通道的配置则更加简单,信号从左边编号1的端口进入,从右边编号2的一端直接进入ADC模块。

这里我们看到所有的上拉、下拉电阻和施密特触发器,均处于断开状态,因此输入数据寄存器将不能反映端口上的电平状态,也就是说,模拟输入配置下,CPU不能在输入数据寄存器上读到有效的数据。

⑤开漏输出模式

当CPU在编号1端通过“位设置/清楚寄存器”或“输出数据寄存器”写入数据后,该数据位通过编号2的输出控制电路传送到编号4的IO端口。

如果CPU写入的是逻辑1,则编号3的N-MOS管将处于关闭状态,此时IO端口的电平将由外部的上拉电阻决定,如果CPU写入的是逻辑0,则编号3的N-MOS管将处于开启状态,此时IO端口的电平被编号3的N-MOS管拉到了VSS的零电位。

在上图的上半部,施密特触发器处于开启状态,这意味着CPU可以在“输入数据寄存器”的另一端,随时监控IO端口的状态;通过这个特性,还实现了虚拟的IO端口双向通信,只要CPU输出逻辑1,由于编号3的N-MOS管处于关闭状态,IO端口的电平将完全由外部电路决定,因此,CPU可以在“输入数据寄存器”读到外部电路的信号,而不是它自己输出的逻辑1。

GPIO口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指GPIO口驱动电路的响应速度,而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在IO口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高的频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

⑥开漏输出复用功能

⑦推挽输出模式

⑧推挽复用输出模式

GPIO推挽复用输出模式,编号2的输出控制电路的输入,与复用功能的输出端相连,此时输出数据寄存器被从输出通道断开了,并和片上外设的输出信号连接。我们将GPIO配置成复用输出功能后,如果外设没有被激活,那么它的输出将不确定,其它部分与前述模式一致,包括对“输入数据寄存器”的读取。

3、应用场合

①上拉输入、下拉输入可以用来检测外部信号;例如,按键等;

②浮空输入模式,由于输入阻抗较大,一般把这种模式用于标准通信协议的I2C、USART的接收端;

③普通推挽输出模式一般应用在输出电平为0和3.3V的场合。而普通开漏输出模式一般应用在电平不匹配的场合,如需要输出5V的高电平,就需要在外部一个上拉电阻,电源为5V,把GPIO设置为开漏模式,当输出高阻态时,由上拉电阻和电源向外输出5V电平。

④对于相应的复用模式,则是根据GPIO的复用功能来选择,如GPIO的引脚用作串口的输出,则使用复用推挽输出模式。如果用在IC、SMBUS这些需要线与功能的复用场合,就使用复用开漏模式。

⑤在使用任何一种开漏模式时,都需要接上拉电阻。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭