当前位置:首页 > 嵌入式 > 嵌入式教程

非均匀采样有很多种,一般来说只要采样间隔不是恒定的,就可以认为是非均匀采样,但是对于大多数非均匀采样其并不具有特别的性能。本案例研究的非均匀采样特指两种情况:随机采样和伪随机采样。随机采样中每个采样点的选择是完全随机的,是理想化的非均匀采样;伪随机采样中每个采样点的选择是经过挑选的伪随机数。非均匀采样的一个很大的优点就是它具有抗频率混叠的性能,从而可以突破奈奎斯特频率的限制,实现以比较低的采样频率检测到很高频率的信号。  采样时刻的选择无疑是非常重要的,它决定了采样后得到的信号的性质。时钟抖动的均匀采样在工程实践中是普遍存在的,并且是不可避免的,例如ad时钟频率存在一定偏差。有抖动的均匀采样时刻{tk},其数学表达式为:  其中,t表示均匀采样的采样周期,{tk}为服从同分布的一组随机变量,其均值是0。设tk的概率密度函数为p(tk),则采样时刻tk的概率密度函数为p(t-(tk-to))。  时钟抖动的均匀采样明显存在很大的缺点。如果tk在区间[kt-0.5t,kt+0.5t]上不是均匀分布,则显然,在kt点附近采样点数很多,其他地方采样点很少。如果tk在区间[kt-0.5t,kt+0.5t]上满足均匀分布,则会发生某些相邻采样点间距很小的情况。对第一种情况,它和均匀采样区别很小,无法利用非均匀采样的优点;对第二种情况,在实际实现中会非常困难,以致无法实现,因为采样间距过小对ad的要求很高。显然,这两种情况都不是本案例所希望的。  在加性非均匀采样中,当前采样时刻是根据前一个采样时刻来选择的,其数学表达式为:  其中,{tk}为服从同分布的一组随机变量,其值恒为正。设tk的概率密度函数为pt(tk)其均值为u,由于tk=t0+t1+t2+…+tk,故pk(t)=pk-1(t)*pt(t)。根据中心极限定理,对于一组相互独立随机变量,当随机变量的个数大到一定程度的时候,它们的总和服从正态分布,因此当k→∞时,pk(t)将趋向于正态分布。当t增加时,加性非均匀采样点的概率分布p(t)将趋向于平坦,其数值大小为l/μ,如图1所示。
 图1 加性非均匀采样点的概率分布  由于采样时刻的分布与均匀采样中采样时刻的分布不同,非均匀采样具有一个非常重要的特点就是可以消除频率混叠现象,下例可以形象化地阐述这个问题。  假设给出一组采样数据,它代表了一个正弦信号(加粗的黑色)的均匀采样值,如图2所示。
 图2 混叠的产生  观察图2,就会清楚发现其他的频率的正弦信号和原始信号同一个采样点处的采样值相等(曲线交点处)。因此,如果 要用这组采样值进行重建原始信号,显然得到的信号不是惟一的。也就是说,用小于奈奎斯特频率的采样频率进行采样 ,得到的采样值是无法恢复出原始信号,这与shannon采样定理是相一致的。这种现象反映到频域上就是频率混叠。  频率混叠现象就会引起信号的不确定,仔细看这些不同频率的正弦波,到底哪个才是真的需要的信号昵?在没有其他 先验知识的情况下,如何消除频率混叠现象是信号处理理论的一个重要研究课题。均匀采样理论中,在进行信号采样前 ,信号先通过一个低通滤波器以便把信号的频谱限制在一个特定的范围内,然后用高于信号最高频率两倍的采样频率进 行采样,从而消除了频率混叠。虽然这种解决混叠问题的方法能够满足要求,但是这种方法滤掉了信号组成成分中超过 某一频率的频率成分,很容易造成失真,同时由于采样频率要高于信号最高频率的两倍,极大限制了数字信号处理理论 使用的范围。如果能突破这个限制,将为数字信号处理理论开辟更为广泛的应用领域。所以摆在面前的问题就是在较低 采样频率的情况下,消除频率混叠是否可能?非均匀采样给出了肯定的回答。  图3直观地说明了非均匀采样如何具有消除混叠的性能。
图3 消除混叠  图3中对原始的低频正弦信号进行了重新采样,采样点的个数保持不变,所不同的地方是采样点的间隔不再是相等的了 。很容易从图3中看出,由于采样点不再是均匀的,只有原始的低频正弦波可以通过采样点,可以被拟合出来,从而也就 消除了频率混叠。  非均匀采样信号的傅立叶变换和均匀采样信号的傅立叶变换的区别主要在于积分时间上的不同。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭