当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于SPCE3200的彩色液晶显示系统设计

1 引言
   
本文介绍了凌阳公司的嵌入式32位多媒体微处理器SPCE3200与Sharp公司的LQ057Q3DC02彩色TFT LCD的软硬件接口。由于SPCE3200内置LCD控制器,故硬件电路简单,两者可直接相连。


2 器件简介
2.1 多媒体微处理器SPCE3200
   
多媒体微处理器SPCE3200以凌阳公司开发的S+core7为内核,内置MPEG4硬件编解码模块和多种多媒体功能模块。S+core7内核是采用凌阳指令集架构(Sunplus ISA)的32位RISC处理器,支持32位/16位混合指令模式和并行条件执行。S+core7内核采用AMBA总线,为SOC集成扩展协处理器和用户接口提供了灵活性。S+core7使用SJTAG技术使测试和调试程序更加有效。SPCE3200采用256引脚PLCC256封装,其内部包含S+core7处理器CPU,符合AMBA标准的与片内高效能模块相连的AHB总线,连接片内其他低速外设的APB总线,AHB到APB的桥控制器和DMA控制器。其中,挂接在高性能AHB总线上的外设模块包括:CMOS图像传感器接口模块(CSI)、MPEG4/JPEG编解码模块、LCD控制器模块、TV编码模块、2通道16位高速D/A转换器、片内8 KB RAM(LDM),片内32 KB
ROM、存储器接口控制单元。挂接在APB总线上的模块包括:GPIO控制器模块、SPI串行总线控制器、SIO串行总线控制器、I2C串行总线控制器、I2S主/从控制器、UART控制器、USB主/从控制器、看门狗模块、SD卡控制器、NAND型Flash控制器以及9通道12位A/D转换器。
    内置于SPCE3200的LCD控制器接口支持TFT型LCD显示屏与STN LCD显示屏连接。为了节省硬件资源,SPCE3200的STN型LCD控制器接口引脚与TFT型LCD控制器接口引脚共用,使用时需要设置相关寄存器以选择LCD控制器的工作模式。当控制器选择TFT LCD工作模式时,接口可支持对多种输入格式的TFT型LCD显示屏的控制,如串行RGB格式、串行RGBDm格式、并行RGB格式、CCIR-601/CCIR-656格式,且支持多种时钟频率。SPCE3200的TFT控制器相关I/O引脚:LCD CLK(时钟信号)、LCD_ACT(数据使能信号)、LCD VS(垂直同步信号)、LCD_HS(水平同步信号)、LCD—DATA[15:0](数据信号)。TFT LCD控制器共有32个寄存器,通过对这32个寄存器参数的设置,即可完成同步信号以及数据格式的设置,满足各种规格的TFT LCD屏要求。
2.2 TFT LCD LQ057Q3DC02
   
LQ057Q3DC02为SHARP公司的5.7英寸320×240彩色TFT LCD。每个像素由R、G、B子像素构成,每个子像素有6位灰度,即每个像素共有18位色,可达到262 144种颜色的真彩效果。采用阴极射线管(CCFT)透射式背光,亮度高达50 Cd/m2:响应时间低于30 ms,可实现无拖影显示动态图像:采用数字接口数据总线,便于驱动控制。LQ05703DC02内部结构如图1所示,驱动一块液晶显示屏需要2种驱动器:数据驱动器和行扫描驱动器。数据驱动器负责3色数据信号的接收、采样和保持,经D/A转换的输出实际驱动信号;扫描信号驱动器产生逐行扫描信号,从而实现对LCD显示像素的寻址。控制TFT-LCD驱动器需4种信号:数据移位时钟(CLK)、行同步时钟(Hsync)、帧同步时钟(Vsync)以及数据信号(DATE)。图像数据在时钟同步信号的作用下通过18位并行数据总线(RO~R5,GO~G5,B0~B5)。写入数据采样保持器,转化为灰度信号后存入每个像素的TFT,使其正常显示。

3 系统硬件设计
   
彩色液晶显示系统结构如图2所示。由于TFTLCD LQ057Q3DC02含有行驱动电路及数据驱动,可直接与多媒体处理器SPCE3200的LCD控制器接口相连。由图2可以看出,SPCE3200通过其内部的NAND Flash控制器将外部的Flash内存储的图像数据送入MPEG4/JPEG硬件编解码模块进行解码,然后存储到缓冲器DRAM。LCD控制器用于产生驱动LCD所需的数据移位时钟、帧同步时钟与行同步时钟,并在该时钟触发下传输缓冲器中的图像数据至LCD显示。

    LQ057Q3DC02与SPCE3200的硬件电路连接如图3,LQ057Q3DC02共有18根数据线,R、G、B3色各占6根,而SPCE3200的LCD控制器接口只有16根数据线,输出RGB565格式图像数据。因此连接时应将SPCE3200的LCD控制器的LCD_D[0:4]端口与LQ057Q3DC02的LCD的B[1:5]端口相连,BO端口接地;LCD控制器的LCD D[5:10]端口与LCD的G[0:5]端口相连;LCD控制器的LCD_D[11:15]端口与LCD的R[1:5]端口相连,R0端口接地。LCD控制器将产生的时钟信号、数据使能信号、垂直同步信号、水平同步信号分别通过LCD_CLK、LCD_ACT、LCD_VS、LCD_HS引脚传输至LCD模块,使得LCD在该时钟的触发下正常显示图像。拉低LQ057Q3DC202的V/Q引脚电平选择QVGA显示模式。通过水平显示模式选择信号(R/L)引脚和垂直显示模式选择信号(U/D)引脚设定TFT-LCD的显示方向。拉低R/L,拉高U/D,选择正向左序显示方向。

    图4为SPCE3200的NAND Flash控制器端口与外部Flash的硬件电路连接图。由图4可以看出外部Flash的8位I/O端口与SPCE3200的NF_D端口相连,用于命令、地址、数据的传输。外部Flash的读忙端口R/B与SPCE3200的就绪输入端口NF_RDY相连,该端口输出低电平时表明正在进行写入、擦除或随机读操作,当操作完成后,输出高电平,通知SPCE3200准备下一次读写操作。Flash的读使能端口RE与SPCE3200的NF_REN端口相连,低电平有效。Flash的使能端口CE与SPCE3200的片选端口NF_CEN相连接,低电平有效。Flash的命令锁存控制端口CLE与SPCE3200的端口NF_CLE相连,当CLE为高电平时,I/O端口在WE的上升沿锁存指令至寄存器。Flash的地址锁存控制端口ALE与SPCE3200的端口NF_ALE相连,当ALE为高电平时,I/O端口在WE的上升沿锁存地址至指令寄存器。Flash的写使能端口WE与SPCE3200的NF_WEN相连,指令、地址和数据都在WE的上升沿被锁存。Flash的写保护端口WP与SPCE3200的NF_WP相连,可在电源波动情况下,对器件的写入或擦除提供写保护功能。

4 系统软件设计
   
SPCE3200相应端口控制器的寄存器参数设置是由系统软件实现的。参数设置后,LQ057Q3DC02在SPCE3200的LCD控制器提供的时钟信号、数据使能信号、垂直同步信号、水平同步信号将显示缓冲区内的图像数据传输至LCD屏显示。SPCE3200内置MPEG4/JPEG硬件编解码模块将图像编码数据从Flash中取出,解码后送显示缓冲区。图5为系统软件设计流程图。

    LCD控制器的初始化包括模块时钟的使能、LCD接口选择、输出数据格式设置、帧数据格式设置以及显示缓冲区起始地址设置。MPEG4/JPEG编解码模块的初始化包括工作时钟使能、设置工作频率,设定VLC编码数据缓冲区、参考图像缓冲区的起始地址以及缓冲区的选择、视频影像尺寸、解码输出的图像格式设置、选择MPEG4解码操作方式、开启MPEG引擎的内部SRAM。最后通过设置P_MPEG4_COMPRESS_CTRL寄存器的MJPGDEC位为1来启动解码操作。
    在使用NAND型Flash控制器之前,必须初始化。NAND型Flash控制器的初始化比较简单,只需要设置3个寄存器用于选择对应引脚作为NAND型Flash接口使用、使能NAND型Flash控制器模块时钟、设置中断。


5 结束语
   
本文介绍了一种新的彩色液晶显示系统,结构简单,耗电量低,使用方便。该系统利用凌阳公司的嵌入式32位多媒体微处理器SPCE3200作为主控制器。采用Sharp公司的LQ057O3DC02彩色液晶显示模块作为图像显示器,由于SPCE3200含有LCD控制器模块可直接与LQ05703DC02相连,且SPC2E3200还含有NAND Flash控制器接口,可直接与Flash相连,故硬件电路简单。本彩晶显示器系统可用于便携式电子产品和电子消费类产品的开发。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭