当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]S3C2440开发板-LCD基础(源代码)

首先了解TFT LCD的时序,每个VSYNC信号表示一帧数据的开始,每个HSYNC表示一行数据的开始,无论这些数据是否有效,每个VCLK表示正在传输一个像素的数据,无论它是否有效。VSPW称为垂直同步信号的脉宽,VBPD称为垂直同步信号的后肩,VFPD称为垂直同步信号的前肩。HSPW称为水平同步信号的脉宽,HBPD称为水平同步信号的后肩,HFPD称为水平同步信号的前肩。查看时序图,VSYNC信号有效时,表示一帧数据的开始,VSPW表示VSYNC信号的脉冲宽度为(VSPW+1)个HSYNC信号周期,即(VSYNC+1)行,这(VSPW+1)行的数据无效。VSYNC信号脉冲之后,还要经过(VBPD+1)个HSYNC信号周期,有效的行数据才出现。所以,在VSYNC信号之后,总共还要经过(VSPW+1+VBPD+1)个无效行,第一个有效的行才会出现。随后即发出(LINEVAL+1)行的有效数据,随后是(VFPD+1)个无效行。HSYNC的类似。不过是以VCLK信号周期为单位。然后主要就是配置5个LCD控制寄存器,3个帧缓冲区起始地址寄存器。注意HSYNC和VSYNC信号,CPU发出的是正脉冲,LCD需要的是负的,所以极性取反,INVVLINE和INVVFRAME置1。M5D宏是用来取低21位。有一些右移一位的操作,主要是进行字节和半字地址的转换。LCD中需要的半字地址,帧缓冲区最低位是A[1]。BSWP和HWSWP是字节和半字交换,主要是处理大小端问题,如果输出的汉字反了,置这个位为1。volatile U32 LCD_BUFFER[240][320];这个是设的帧缓冲区,即视口,是帧内存的一部分,这个程序中,帧内存和帧缓冲区一样大。帧内存在SDRAM中,相当于显存。只要向帧缓冲区中写入数据,LCD的DMA控制器会自动将数据从总线发到LCD驱动器。在VCLK的上升沿发送数据,在VCLK的下降沿,LCD驱动器接受数据。BPP24BL是设置LCD的显示模式为24BPP时,一个4字节中哪3个字节有效。PAGESIZE是帧缓冲区的水平宽度,OFFSET是一行剩下的长度。VD[23]"VD[0],是24根数据线,即RGB信号线。

下面的程序将LCD涂成红色,然后画一个蓝色的矩形。

#define rGPCCON    (*(volatile unsigned *)0x56000020)  
#define rGPCUP     (*(volatile unsigned *)0x56000028)  
#define rGPDCON    (*(volatile unsigned *)0x56000030)  
#define rGPDUP     (*(volatile unsigned *)0x56000038)  
#define rLCDCON1    (*(volatile unsigned *)0x4d000000)   
#define rLCDCON2    (*(volatile unsigned *)0x4d000004)   
#define rLCDCON3    (*(volatile unsigned *)0x4d000008)   
#define rLCDCON4    (*(volatile unsigned *)0x4d00000c)   
#define rLCDCON5    (*(volatile unsigned *)0x4d000010)   
#define rLCDSADDR1  (*(volatile unsigned *)0x4d000014)   
#define rLCDSADDR2  (*(volatile unsigned *)0x4d000018)  
#define rLCDSADDR3  (*(volatile unsigned *)0x4d00001c)  
#define rLCDINTMSK  (*(volatile unsigned *)0x4d00005c)  
#define rTPAL       (*(volatile unsigned *)0x4d000050)  
#define rGPGCON    (*(volatile unsigned *)0x56000060)   //Port G control  
#define rGPGDAT    (*(volatile unsigned *)0x56000064)   //Port G data  
#define rGPGUP     (*(volatile unsigned *)0x56000068)   //Pull-up control G  
#define rLCDINTMSK  (*(volatile unsigned *)0x4d00005c)  
#define rTPAL       (*(volatile unsigned *)0x4d000050)  
#define rTCONSEL     (*(volatile unsigned *)0x4d000060)   //LPC3600 Control --- edited by junon  
//垂直同步信号的脉宽、后肩和前肩  
#define VSPW       15  
#define VBPD       3  
#define VFPD       5  
//水平同步信号的脉宽、后肩和前肩  
#define HSPW       8  
#define HBPD       58  
#define HFPD      15  
#define CLKVAL 10  
#define HOZVAL 319  
#define LINEVAL 239  
#define PWREN 1  
#define MMODE 0  
#define PNRMODE 3  
#define BPPMODE 13  
#define INVVCLK 0  
#define INVVD 0  
#define INVVDEN 0   
#define U32 unsigned int   
#define M5D(n) ((n) & 0x1fffff)  
#define PAGEWIDTH 320  
#define OFFSIZE 0  
#define LCD_XSIZE 320  
#define LCD_YSIZE 240  
#define SCR_XSIZE 320  
#define SCR_YSIZE 240  
#define INVVLINE  1      
#define INVVFRAME 1      
#define BPP24BL 0  
#define BSWP 0  
#define HWSWP 0  
volatile U32 LCD_BUFFER[240][320];  
void Init_LCD(){  
        rLCDCON1=(CLKVAL<<8)|(MMODE<<7)|(PNRMODE<<5)|(BPPMODE<<1)|0;   //设置CLKVAL,VCLK=HCLK/[(CLKVAL+1)*2],决定VM的触发方式,选择显示模式和BPP模式,暂时不要开启LCD,因为还没有设置好
       rLCDCON2=(VBPD<<24)|(LINEVAL<<14)|(VFPD<<6)|(VSPW);    //rLCDCON2,rLCDCON3和rLCDCON4主要设置时序  
       rLCDCON3=(HBPD<<19)|(HOZVAL<<8)|(HFPD);  
       rLCDCON4=(HSPW);  
       rLCDCON5 = (BPP24BL<<12) | (INVVCLK<<10) | (INVVLINE<<9) | (INVVFRAME<<8) | (0<<7) | (INVVDEN<<6) | (PWREN<<3)  |(BSWP<<1) | (HWSWP);                      

   //INVVLINE和INVVFRAME需要进行翻转,因为CPU发出的是正脉冲,LCD使用的是负脉冲,所以要改变极性,PWREN使能电源信号
       rLCDSADDR1=(((U32)LCD_BUFFER>>22)<<21)|M5D((U32)LCD_BUFFER>>1);  
       rLCDSADDR2=M5D(((U32)LCD_BUFFER+(SCR_XSIZE*SCR_YSIZE*4))>>1 );  
       rLCDSADDR3=PAGEWIDTH*32/16;  
       rLCDINTMSK|=(3);        
       rTCONSEL = 0;            
       rGPCUP = 0x0;  
       rGPDCON = 0xaaaaaaaa;  
       rGPCCON = 0xaaaa02a9;  
       rGPDUP = 0x0;  
       rGPGUP=rGPGUP&("(1<<4))|(1<<4);        
       rGPGCON=rGPGCON&("(3<<8))|(3<<8);   
       rLCDCON1 |= 1;   //使能数据输出和LCD控制信号
}
void Paint_background(U32 c){  
    unsigned int i, j;  
    for(j = 0; j < LCD_YSIZE; j++)  
        for(i = 0; i < LCD_XSIZE; i++)  
            LCD_BUFFER[j][ i] = c;  
}  
void Paint_rectangle(U32 c){  
        int i, j;  
        for(i = 100; i < 200; i++)  
            for(j = 100; j < 200; j++)  
                LCD_BUFFER[ i][j] = c;  
}  
int LcdMain(){  
    Init_LCD();  
    Paint_background(0xCD5C5C);  
    Paint_rectangle(0x000080);  
    while(1);  
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭