当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]高速转换器时钟分配器件的端接

使用时钟分配器件1或者扇出缓冲器为ADC和DAC提供时钟时,需要考虑印刷电路板上的走线和输出端接,这是信号衰减的两个主要来源。

时钟走线与信号摆幅
PCB上的走线类似于低通滤波器,当时钟信号沿着走线传输时,会造成时钟信号衰减,并且脉冲沿的失真随线长增加。更高的时钟信号频率会导致衰减、失真和噪声增加,但不会增加抖动,在低压摆率时抖动最大(图1),一般使用高压摆率的时钟沿。为了实现高质量的时钟,要使用高摆幅时钟信号和短时钟PCB走线;由时钟驱动的器件应该尽可能靠近时钟分配器件放置。


图1. ADCLK925的均方根抖动与输入压摆率的关系

ADCLK9542时钟扇出缓冲器和ADCLK9143超快时钟缓冲器就是两款此类时钟分配器件。ADCLK954包括12个输出驱动,可以在50-Ω的负载上驱动全摆幅为800-mV 的ECL(发射极耦合逻辑)或者LVPECL(低压正ECL)信号,形成1.6 V的总差分输出摆幅,如图2所示。它可以在4.8 GHz反转率下工作。ADCLK914可以在50Ω负载上驱动1.9 V高压差分信号(HVDS),形成3.8 V的总差分输出摆幅。ADCLK914具有7.5-GHz的反转率。

当驱动DAC时,时钟分配器件应该尽可能靠近DAC的时钟输入放置,这样,所需的高压摆率、高幅度时钟信号才不会引起布线困难、产生EMI或由电介质和其它损耗造成减弱。值得注意的是,走线的特性阻抗(Z0)会随走线尺寸(长度、宽度和深度)而变化;驱动器的输出阻抗必须与特性阻抗匹配。


图2. 采用3.3V电源供电时ADCLK954时钟缓冲器的输出波形

输出端接
时钟信号衰减会增加抖动,因此对驱动器输出的端接很重要,这可以避免信号反射,并可通过相对较大的带宽实现最大能量传输。确实,反射可以造成下冲和过冲,严重降低信号和整体时钟的性能,或者在极端情况下,可能会损坏接收器或驱动器。反射因阻抗不匹配而引起,在走线没有适当端接时发生。由于反射系数本身具有高通特性,因此这对具有快速上升和下降时间的高速信号更重要。反射脉冲与主时钟信号相叠加,削弱了时钟脉冲。如图3所示,它对上升沿和下降沿增加了不确定的延时或者抖动,从而影响时钟信号的边沿。


图3. 由端接不当引起的反射信号抖动[!--empirenews.page--]

端接不当使回声的幅度随着时间而变化,因此∆t也会随时间变化。端接的时间常数也会影响回声脉冲的形状和宽度。基于以上原因,反射引起的附加抖动,从形状看类似增加经典抖动的高斯特性。为了避免抖动和时钟质量降低的不利影响,需要使用表1中总结的恰当信号端接方法。Z0是传输线的阻抗;ZOUT 是驱动器的输出阻抗,ZIN 是接收器的输入阻抗。仅显示CMOS和PECL/LVPECL电路。

表1. 时钟端接

 

表1. 时钟端接

方法
描述
优势
弱点
备注
串行端接
CMOS

实际上,因为阻抗会随频率动态变化,难以达到阻抗匹配,所以缓冲器输出端可以省去电阻(R)。
低功耗解决方案(没有对地的吸电流)
很容易计算R的值 R (Z0ZOUT).
上升/下降时间受RC电路的影响,增加抖动。
只对低频信号有效。
CMOS驱动器
不适合高频时钟CMOS drivers.信号。
适合低频时钟信号和非常短的走线。
下拉电阻
CMOS
非常简单(R = Z0)
高功耗
不推荐
LVPECL
简单的3电阻解决方案。
就节能而言稍好一点,相对于4电阻端接来说节省一个电阻。
 
推荐。
端接电阻尽可能靠近PECL接收器放置。
交流端接
CMOS
没有直流功耗。
 
为避免较高功耗,C应该很小,但也不能太小而导致吸电流。
LVPECL
交流耦合允许调整偏置电压。避免电路两端之间的能量流动。
交流耦合只推荐用于平衡信号(50%占空比的时钟信号)。
交流耦合电容的ESR值和容值应该很低。
电阻桥
CMOS
功耗实现合理的权衡取舍。
单端时钟用两个器件。
 
LVPECL
 
差分输出逻辑用4个外部器件
3.3V LVPECL驱动器广泛应用端接。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭