当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于ARM+FPGA架构的三维图形加速系统

引言

  随着图形处理的巨额运算量,CPU变得不堪重负。此时,需要使用特定的硬件设备来为嵌入式CPU承担图形处理的任务。

  具有三维图形硬件加速能力的ARM+FPGA架构嵌入式图形系统就是其中一种解决方案。其中,ARM处理器负责运行嵌入式操作系统、执行上层图形应用程序,而三维图形处理所需的大量运算则由FPGA实现的GPU(图形处理单元)进行。
 

  图形API简介

  在图形系统中预先定义了一组图形API,作为一个抽象层将图形应用程序和图形系统的具体实现隔离开来。具体的图形应用程序都将通过这些图形API来完成所有与绘制图形相关的工作。这样,同样的应用程序就可以在不同的目标图形系统上运行。

  目前应用较为广泛的标准图形API主要有Direct3D和OpenGL。OpenGL定义了与具体硬件实现无关的软件接口,并且不受制于具体的窗体系统。

  本文选用23条OpenGL中最常用的API作为本系统的图形API。在执行应用程序时,具体的图形API被转换成GPU可以处理的渲染列表数据格式,从而将计算任务转交由GPU完成,实现对三维图形处理的硬件加速。

  系统硬件设计

  系统硬件结构

  本文设计的嵌入式图形系统由基于ARM处理器的最小系统、FPGA实现的图形加速、LCD控制器等功能模块,以及常用外设接口电路组成,如图1所示。

  

 

  图1 系统硬件结构

  基于ARM处理器的最小系统是本系统的核心模块,主要由嵌入式处理器、系统内存SDRAM和FLASH存储器组成。SDRAM为处理器运行操作系统和执行应用程序提供内存空间,FLASH用来存放系统引导代码、操作系统内核和应用程序。

  图形加速模块是使用FPGA实现的嵌入式GPU,是系统能够实现硬件加速的关键部件。它通过内部图形处理流水线处理CPU生成的渲染列表,并最终形成像素数据写入帧缓冲SRAM中供LCD进行显示。该模块在三维图形处理中使用固定功能的图形处理流水线,如图2所示。

  

 

  图2 图形处理流水线示意图

  图形加速模块在一片SRAM中生成完整帧数据后将其控制权交给LCD控制器,并使用另一片SRAM继续下一帧数据的计算。在新的一帧数据完成后便再次与LCD控制器交换控制权。LCD控制器通过SRAM仲裁模块从当前显示的帧缓存中读出帧数据,生成符合LCD显示屏要求的时序,完成三维数据的显示。

  系统中存在两组LCD总线。一组是ARM处理器提供的LCD总线,用来显示嵌入式操作系统的图形用户界面;另一组是进行三维图像显示的LCD控制器的LCD总线。总线切换模块负责两类总线的切换,将合适的LCD总线挂接到LCD屏上进行显示。[!--empirenews.page--]系统硬件实现

 

  本文选用S3C2410嵌入式处理器和Cyclone II系列FPGA实现图形加速以及其他功能模块,辅以LCD屏、串口等外围电路实现整个图形系统。

  电源设计

  本系统需要多个不同电压值的直流电源供电,包括5V、3.3V、1.8V和1.2V。其中5V电源从外部直流电源直接引入,而其他电压值则由5V电压变换得到。

  S3C2410的内核电压为1.8V,外部I/O和存储器电压为3.3V。系统选用低压差稳压器AS1117实现这两种电压的转换,固定输出时只需三个引脚,如图3所示。

  

 

  图3 1.8V电源电路

  本文使用TPS70345为FPGA提供1.2V内核电压和3.3V IO电压。

  ARM与FPGA接口电路

  生成三维图形时,嵌入式微处理器上运行的图形应用程序生成三维图形的渲染列表,并将渲染列表写入到FPGA的渲染列表缓冲区中,等待图形加速模块的处理。ARM与FPGA接口电路既要保证可以完成渲染列表的写操作,又要能够对FPGA中总线接口模块、图形加速模块、LCD控制器等的内部寄存器进行读写操作。接口电路如图4所示。

  

 

  图4 ARM与FPGA接口电路

  系统软件设计

  系统软件架构

  本文使用FPGA实现整个三维图形处理流水线,由硬件完成三维图形生成和处理。运行在操作系统上的图形应用程序通过调用图形API实现具体应用,而驱动程序将图形API的调用转换成渲染列表,从而将具体的三维图形处理任务交给硬件完成,如图5所示。

  

 

  图5 系统软件架构

  考虑到嵌入式图形系统除了进行三维图形处理之外,还应当能够为用户提供友好的用户图形操作界面,本文采用了Windows CE操作系统。[!--empirenews.page--]驱动程序设计

 

  设备驱动程序在操作系统和硬件设备之间建立了一个桥梁,让操作系统能够识别设备并为应用程序提供设备服务。

  本文中FPGA实现的图形加速模块作为一个设备挂接在系统中。系统在软件上只需要将渲染列表写到该设备的地址空间,因此本文使用了简单的流式接口驱动,所有的流接口驱动程序都使用相同的一组流接口函数。

  渲染列表的传递是不需要反馈的,系统将渲染列表写入设备(GPU)后并不需要从设备中获取数据,因此流接口函数GPU_Read()并不需要实现具体功能,只在GPU_Write()中将渲染列表写入到设备中。另外,系统在普通图形界面和三维显示两种显示模式下使用的是不同的LCD控制器。前者使用S3C2410中集成的LCD控制器,而后者使用的是FPGA模块中实现的LCD控制器,两种模式下通过LCD总线切换模块进行切换。

  结语

  本文设计了基于ARM和FPGA的嵌入式图形系统,使用FPGA在硬件上实现三维图形处理,缓解嵌入式CPU在处理三维图形时因计算量过大而导致系统效率降低的问题。图像显示符合人眼对图像连续性的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Arm CPU正在从根本上推动AI变革,并造福地球。Arm架构是未来AI计算的基石。​

关键字: ARM AI

近日,Arm推出了Arm® Ethos™-U85神经网络处理器(NPU)和Arm Corstone™-320物联网参考设计平台,旨在满足海量的数据处理和大规模计算,加速推进边缘AI的发展进程。

关键字: ARM

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

为了赶超云计算市场上的竞争对手,谷歌正试图通过定制的Arm服务器芯片降低云计算服务成本。

关键字: 谷歌 ARM 定制芯片

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

嵌入式开发作为一个融合了计算机软硬件和系统工程的综合性领域,其成功与否往往取决于三个核心要素的有效整合与协调。这三个要素分别是:硬件平台的选择与设计、软件开发及其优化、以及系统级的设计与集成。深入理解并熟练掌握这三个方面...

关键字: 嵌入式开发 ARM

Pmod接口可以说是数字电路板的连接革命。随着科技的飞速发展,数字电路板间的通信与连接技术也在不断创新和进步。Pmod接口,作为一种新兴的数字接口标准,正逐渐成为数字电路板间通信的桥梁,为电子设备的连接和通信带来了革命性...

关键字: pmod接口 FPGA 数字电路板

近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU...

关键字: FPGA AI 图形处理器

随着汽车软件数量爆发式的增长,整个行业都需要重新思考汽车产品的开发流程。为此,Arm推出了丰富的硬件IP、新的系统IP,以及全新的汽车计算与计算子系统产品路线图,旨在为各种汽车应用实现性能、功能安全、可扩展等方面的支持。

关键字: ARM 汽车电子

知名移动芯片设计公司ARM最近迈出重要一步,它正式推出汽车芯片设计。ARM推出的芯片设计方案名叫Neoverse,随同芯片一起推出的还有面向汽车制造商、汽车供应商的新系统。

关键字: ARM 汽车芯片 芯片
关闭
关闭