当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]FDTD参数选择程序

针对二阶精度的时域有限差分程序.

  现可直接调用的源信号是:一个周期的正弦信号,高期脉冲,ricker子波.

  其它信号可手动修改源信号接口,或源生成函数.

  ---------------

  请函数.

  %************************************************************

  % 1. determine maximum possible spatial field discretization.

  % (in order to avoid numerical dispersion).(5 grid points per

  % minimum wavelength are needed to avoid dispersion).

  % 2. find the maximum possible time step using this dx and dz.

  % (in order to avoid numerical instability).

  % Coded by yiling. Email: yiling@email.jlu.edu.cn

  % Date: 2008

  %*************************************************************************+

  clear;

  clc;

  %--------------------------------------------------------------------------

  dx=0.02; % (m)

  dy=0.02; % (m)

  epsilonmax=25; % Epsion. maximum relative dielectric permittivity.

  mumax=1; % Mu. maximum relative magnetic permeability.

  sourcetype='ricker'; % can be 'cont_sine', 'gaussian', 'ricker'.

  freq=100e6; % (Hz)

  amp=1; % amplitude.

  thres=0.02; % threshold to determine maximum frequency in source pulse.(proposed = 0.02).

  %--------------------------------------------------------------------------

  Timewindows=528; % (ns)

  %--------------------------------------------------------------------------

  %*************************************************************************+

  %--------------------------------------------------------------------------

  vlight=0.3;

  epsilonmin=1; % Epsion. minimum relative dielectric permittivity.

  mumin=1; % Mu. minimum relative magnetic permeability.

  %--------------------------------------------------------------------------

  dt=1/(vlight*sqrt(1/dx^2+1/dy^2));

  % minwavelength=vlight/sqrt(epsilinmax);

  %--------------------------------------------------------------------------

  t=0:dt:Timewindows;

  dt=dt*1e-9;

  t=t*1e-9;

  Timewindows=Timewindows*1e-9;

  source=gprmaxso(sourcetype,amp,freq,dt,Timewindows);

  [dxmax,wlmin,fmax] = finddx(epsilonmax,mumax,source,t,thres);

  %--------------------------------------------------------------------------

  disp('----------------------------------------------------------------- ');

  disp(['Maximum frequency contained in source pulse = ',num2str(fmax/1e6),' MHz']);

  disp(['Minimum wavelength in simulation grid = ',num2str(wlmin),' m']);

  disp(['Maximum possible electric/magnetic field discretization (dx,dy) = ',num2str(dxmax),' m']);

  disp(' ');

  %--------------------------------------------------------------------------

  %--------------------------------------------------------------------------

  dtmax = finddt(epsilonmin,mumin,dxmax,dxmax);

  disp(['Maximum possible time step with this discretization = ',num2str(dtmax/1e-9),' ns']);

  disp('----------------------------------------------------------------- ');

  %**************************************************

  子函数1

  function dtmax = finddt(epmin,mumin,dx,dz);

  % finddt.m

  %

  % This function finds the maximum time step that can be used in the 2-D

  % FDTD modeling codes TM_model2d.m and TE_model2d.m, such that they remain

  % numerically stable. Second-order-accurate time and fourth-order-accurate

  % spatial derivatives are assumed (i.e., O(2,4)).

  %

  % Syntax: dtmax = finddt(epmin,mumin,dx,dz)

  %

  % where dtmax = maximum time step for FDTD to be stable

  % epmin = minimum relative dielectric permittivity in grid

  % mumin = minimum relative magnetic permeability in grid

  % dx = spatial discretization in x-direction (m)

  % dz = spatial discretization in z-direction (m)

  %

  % by James Irving

  % July 2005

  % convert relative permittivity and permeability to true values

  mu0 = 1.2566370614e-6;

  ep0 = 8.8541878176e-12;

  epmin = epmin*ep0;

  mumin = mumin*mu0;

  % determine maximum allowable time step for numerical stability

  dtmax = 6/7*sqrt(epmin*mumin/(1/dx^2 + 1/dz^2));

  子函数2

  function [dxmax,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres);

  % finddx.m

  %

  % This function finds the maximum spatial discretization that can be used in the

  % 2-D FDTD modeling codes TM_model2d.m and TE_model2d.m, such that numerical

  % dispersion is avoided. Second-order accurate time and fourth-order-accurate

  % spatial derivatives are assumed (i.e., O(2,4)). Consequently, 5 field points

  % per minimum wavelength are required.

  %

  % Note: The dx value obtained with this program is needed to compute the maximum

  % time step (dt) that can be used to avoid numerical instability. However, the

  % time vector and source pulse are required in this code to determine the highest

  % frequency component in the source pulse. For this program, make sure to use a fine[!--empirenews.page--]

  % temporal discretization for the source pulse, such that no frequency components

  % present in the pulse are aliased.

  %

  % Syntax: [dx,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres)

  %

  % where dxmax = maximum spatial discretization possible (m)

  % wlmin = minimum wavelength in the model (m)

  % fmax = maximum frequency contained in source pulse (Hz)

  % epmax = maximum relative dielectric permittivity in grid

  % mumax = maximum relative magnetic permeability in grid

  % srcpulse = source pulse for FDTD simulation

  % t = associated time vector (s)

  % thres = threshold to determine maximum frequency in source pulse

  % (default = 0.02)

  %

  % by James Irving

  % July 2005

  if nargin==4; thres=0.02; end

  % convert relative permittivity and permeability to true values

  mu0 = 1.2566370614e-6;

  ep0 = 8.8541878176e-12;

  epmax = epmax*ep0;

  mumax = mumax*mu0;

  % compute amplitude spectrum of source pulse and corresponding frequency vector

  n = 2^nextpow2(length(srcpulse));

  W = abs(fftshift(fft(srcpulse,n)));

  W = W./max(W);

  fn = 0.5/(t(2)-t(1));

  df = 2.*fn/n;

  f = -fn:df:fn-df;

  W = W(n/2+1:end);

  f = f(n/2+1:end);

  % determine the maximum allowable spatial disretization

  % (5 grid points per minimum wavelength are needed to avoid dispersion)

  fmax = f(max(find(W>=thres)));

  wlmin = 1/(fmax*sqrt(epmax*mumax));

  dxmax = wlmin/5;

  子函数3

  function [excitation]=gprmaxso(type,amp,freq,dt,total_time);

  % GPRMAXSO Computes the excitation function used in 'GprMax2D/3D'

  % simulators for ground probing radar.

  %

  % [excitation] = gprmaxso('source_type',Amplitude,frequency,Time_step,Time_window)

  % source_type can be 'cont_sine', 'gaussian', 'ricker'

  % Amplitude is the amplitude of the source

  % frequency is the frequency of the source in Hz

  % Time_step is the time step in seconds

  % Time_window is the total simulated time in seconds

  %

  % excitation is a vector which contains the excitation function.

  % If you type plot(excitation) Matlab will plot it.

  % You can use the signal processing capabilities of Matlab

  % to get a Spectrum etc.

  %

  % Copyright: Antonis Giannopoulos, 2002 This file can be distributed freely.

  RAMPD=0.25;

  if(nargin < 5)

  error('GPRMAXSO requires all five arguments ');

  end;

  if(isstr(type)~=1)

  error('First argument should be a source type');

  end;

  if(freq==0)

  error(['Frequency is zero']);

  end;

  iter=total_time/dt;

  time=0;

  if(strcmp(type,'ricker')==1)

  rickth=2.0*pi*pi*freq*freq;

  rickper=1.0/freq;

  ricksc=sqrt(exp(1.0)/(2.0*rickth));

  i=1;

  while(time<=total_time)

  delay=(time-rickper);

  temp=exp(-rickth*delay*delay);

  excitation(i)=ricksc*temp*(-2.0)*rickth*delay;

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'gaussian')==1)

  rickper=1.0/freq;

  rickth=2.0*pi*pi*freq*freq;

  i=1;

  while(time<=total_time)[!--empirenews.page--]
delay=(time-rickper);

  excitation(i)=exp((-rickth)*delay*delay);

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'cont_sine')==1)

  i=1;

  while(time<=total_time)

  ramp=time*RAMPD*freq;

  if(ramp>1.0)

  ramp=1.0;

  end;

  excitation(i)=ramp*sin(2.0*pi*freq*time);

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'sine')==1)

  i=1;

  while(time<=total_time)

  excitation(i)=sin(2.0*pi*freq*time);

  if(time*freq>1.0)

  excitation(i)=0.0;

  end;

  time=time+dt;

  i=i+1;

  end;

  end;

  excitation=excitation.*amp;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭