当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]SH-3系列单片机的程序设计关键技术

摘要:设计基于SH-3系列单片机程序时的若干关键技术,包括中断处理程序和C程序中变量,并给出关键部分的汇编和C语言程序。介绍的所有方法都在实际系统中得到验证。

关键词:SH3程序设计中断处理SH7709S

SH一3是Renesas公司SupezH系列的高端32位RISC构架单片机系列,具有低功耗、高性能、集成MMU、cache和电源管理模块等特点,处理速度为60~260MIPs。SH-3包括SH7705、SH7708、SH7709、SH7727、SH7729等单片机,广泛应用于彩色打印机、扫描仪、DVD解码器等高端数码设备上。SH7709S是SH-3系列中有代表性的一款单片机,文中介绍方法均在SH7709S的系统中得

到验证。

主要介绍程序设计时三个关键部分:建立中断处理程序结构、初始化C程序中赋初始值的变量和上电初始化流程。

1建立中断处理程序结构

SH-3的中断处理方式与一般处理器不同,没有固定的中断向量表,比较灵括,用户可以在存储器中建立上述仅是对P09702的基本应用。通过该文介绍的方法,并结合SSDl303的指令集,读者将能够对P09702应用自如。一个处理异常事件(Exeeplaonevents)的程序结构,作为中断向量表。

SH一3把异常分为三类:复位(Reset)、普通异常事件(Generalexcephonevents)和中断请求(Generalintemaptrequests),复位包括上电、手动和H—UDI复位,异常事件主要包括非法指令、地址错误等,中断请求主要包括模块中断、外部中断等。每种中断都包含若干中断源,每种中断源对应INTEVT和IMEVT2寄存器中不同的异常码。发生复位时,程序会跳到地址AO000000H执行,发生异常事件和中断请求时,程序会跳转到由向量基址寄存器VBR加不同偏移量决定的地址。不同的异常事件和中断请求对应不同的偏移量。异常事件对应的偏移量是100H,其中因TLB寄存器产生的两种异常对应的偏移量是400H,所有中断请求对应的偏移量都是600H。初始化时,要把对应的中断处理程序放到相应的地址.如图l所示。重置引导程序段(Starl段)应放在地址A00000000H的内存,当VBR=A0000000H时,异常事件处理程序段(GEEntry段)放在VBR+100H=A0000100H处,TLB异常处理程序段(TLBEntry段)放在VBR+400H=A0000400H处,中断请求处理程序段(INTEntry)放在VBR+600H=A0000600H处。系统给这几个程序段分布的空间比较小,最大不超过1KB,其主要功能是保存CPU寄存器,然后跳转到异常码判断程序,由判断程序找出中断源,并执行相应的处理程序。

GEEntry、TLBEntry与INTEntry的处理过程类似。下面以TLB异常为例来说明这一处理过程。当发生TLB异常时,程序跳转到VBR+400H地址。进入TLBEntry,首先把所有CPU寄存器保存到堆栈中(R15是堆栈指针),保存完毕后,跳转到异常码判断程序TLBHandler,由TLBHandlei判定中断源,并执行相应的处理程序。

·SECTIONTLBEntry,CODE,ALIGN=4

·EXPORT_TLBEntry

下面是用C编写的TLBHandler程序,该程序位于P段,与TLBEntry段所在的数据段不同(图1)。TLBHandler根据INTC.EXPEVT(定义在7709s.h)的值判断是哪种_TLB异常,并跳转到相应的处理程序中执行。

2初始化C程序中赋有初始值的变量

编译器把编译后的C程序主要分为(见图1):代码段(P)、常量段(C)、初始化数据段(D)、末初始化变量段(B)、D段对应在RAM中的数据段(R)和堆栈段(S)。其中P、C和D段在ROM中,B、R和S段在RAM中。D段中保存的是在定义时已经初始化变量的初值,例如按如下定义的变量a。

inti=l:

编译器实际上为初始化的变量分配了两块空间,在ROM中的D段和在RAM中的R段,D段保存的是变量的初始值,而变量对应的地址在R段。上电后,需要把D段中的数据搬到R段中,这是嵌入式系统初始化过程中非常重要的一部分。B段中保存的是未赋初值的变量,例如按如下定义的变量b。

intb:

可以在开始时把B段中变量全部初始化为0。首先要给出D、R和B段的起始和结束地址,如下:

然后在初始化过程中把D段中的初始值搬运到R段,并给B段中变量赋一个初始值。下面是用C编写的程序。

3上电初始化过程

SH-3上电初始化过程如图2中所示,按箭头指向的顺序进行,同一级中各个部分初始化时无先后顺序。

上电后,先使状态寄存器SR中阻塞位BL=1,禁示接受异常和中断,再开始初始化过程。系统时钟由上电时。MD0、MDl、MD2的电平和FRQCR寄存器的设置来决定,跳线选择时钟源和总线时钟倍频,FRQCR设置内核和外设时钟倍频。

center>

SH-3的地址空间一般分为7个区,Area0-Area6,每区占64MB的地址,Areal由系统使用,其他6个区由用户使用。Area0-Area6(除ATeal)都能接普通的ROM和RAM,每区可以分别设置从8~32bit的总线位宽和读写等待周期数,此外Area2和Area3有SDRAM接口,Aera5和Area6有PCMCIA和burstROM接口。Aera0的总线位宽由上电时管脚MD3、MD4电平决定,其他几个区中总线宽度由总线状态控制器BSC(BusStateController)中寄存器设定。初始化BSC要设定每个区接入的存储器类型、总线位宽和读写等待周期,如果在Area2或Area3接有SDRAM,还要初始化BSC中的SDRAM控制器。

SH-3内置有缓存,可以通过CCR寄存器设置成Write-through(直接写到内存中)和Write-back(先写到Cache中)两种使用摸式。设置成Write-back模式会显著提升系统的速度。没有专用的堆栈指针SP,用R15代替。初始化R15后,一般不要在程序中改变R15的值。[!--empirenews.page--]

D段到R段的数据搬运和初始化VBR在1、2部分中已详细介绍。SH-3的可屏蔽中断分为O~15个优先级,只有优先级高于SR中断屏蔽位IO~13的中断才能被响应。在初始化时,要给使用到的中断设定优先级。之后是用户初始化使用到功能模块。

完成初始化后,解除中断屏蔽,把SR中BL位设为0,跳转到用户程序(一般是C语言中的main()函数),初始化过程完成。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭