当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]电压无功控制器通常由单片机系统构成,它集数据采集、数据处理、控制判断和控制输出于一身。这就使得单片机负担比较重,而且限于单片机自身的处理能力,无法实现复杂的数据处理和控制策略。将DSP芯片应用到电压无功控 ...

电压无功控制器通常由单片机系统构成,它集数据采集、数据处理、控制判断和控制输出于一身。这就使得单片机负担比较重,而且限于单片机自身的处理能力,无法实现复杂的数据处理和控制策略。将DSP芯片应用到电压无功控制器,可以有效地提高其性能。

TMS320F24X 系列是美国TI公司推出的高性能16位定点DSP,专门为电机控制和其它控制系统而设计。TMS320F240是其中典型的一种,片内的外设和强大的处理 能力使它很适合用于电压无功控制器。本文着重介绍其于TMS320F240的电压我功控制器的设计及其编程。

1基于TMS320F240的电压无功控制器的设计

1.1TMS320F240简介

TMS320F240主要由CPU、存储器和片上外设三部分组成,其主要特点如下:

·采用改进型哈佛结构,具有分离的程序总线和数据总线,使用四级流水线作业,并且允许数据在程序存储空间和数据存储空间之间传输,从而提高了运行速度和编程的灵活性。指令执行速度为20MIPS,几乎所有的指令都可以在50ns的单周期内执行完毕。

·存储器可寻址空间224K字(64K字程序空间,64K字数据空间,64K字I/O空间,32K字全局空间);片内有16K字的Flash EEPROM。

·双10位A/D转换器,共16位输入通道,转换时间为6μs。事件管理器中有3个定时/计数器,4个捕获单元等。

1.2控制器的硬件结构

控制器总体结构如图1所示,由CPU、开关量输入、开关量输出、模拟量输入、键盘显示和通信等模块组成。CPU模块采用主从式结构:单片机(采 用Intel公司的80C196)为主,完成外围电路的控制,处理整个控制器的工作流程; TMS320F240为从,完成数据采集,数据计算等。单片机和TMS320F240之间采用双口RAM进行通讯。TMS320F240主要外围电路如图 2所示。

XTAL1和XTAL2之间接10MHz的晶振,经片内PLL时钟模块后系统时钟为 20MHz。16个A/D通道分为两组:AD0~AD3和AD8~AD11为1组,采集变压器#1高压主侧电压电流及低压侧电压信号;AD4~AD7和 AD12~AD15为II组,采集变压器#2电量。高压侧每一相的电压电流同步采集,可以保证计算准确。扩展16K字外部数据存储器用来存放采集的电压、 电流。扩展2K×8位的双口RAM用来和单片机(80C196)通讯。采用双口RAM进行通讯具有程序设计简单、数据传输方便快速等优点。

2TMS320F240的编程

TMS320F240的程序采用汇编语言编写,其流程见图3。在程序初始化部分,对芯片内部寄存器进行设置。通用定时器1设置为连续递增计数模式,代码如下:

LDP #232
SPLK #1000000101000000h,T1CON
SPLK #0000000000101010b,GPTCON
SPLK #1563,T1PR ;set sample frequency=20000/2/1563=6.4kHz

频率为6.4kHz。数据采集部分采用定时器1,数据长度为128点。这样,对于50Hz信号可保证采样为一个整周期。A/D转换设置为双A/D同步采术,如通道0与通道8采样时,设置A/D的代码为:

LDP #224

SPLK #1001100100000000b,ADCTRL1

SPLK #0000000000000101b,ADCTRL2

谐波分析采用基2的128点快速速傅立叶变换,取前30次谐波数据传递给80C196。

程序中每一相的电压有效值、电流有效值、有功功率、无功功率使用下列各式计算(其中N=128)。

电压有效值:

电流有效值:

有功功率:

无功功率

TMS320F240中没有开平方运算的指令,电压、电流计算中的开平方采用牛顿代法。开平方函数f(x)=x2-c=0的根的牛顿迭代公式为:

迭达收敛的速度取决于x初值的选取。初值x0越接近真值,收敛速度越快。政党情况下,电网的电压及电流尤其是电压变化范围不大,初值比较好选取。

由于单相电压电流采用同步采样,功率的计算比较准确。三相电路的有功功率及无功功率分别为它们的各相之和。电路为三相对称时,可采用单相功率的3倍作为总的三相功率。

TMS320F240与80C196的通讯采用双口RAM完成。在双口RAM中定义寄存器单元存放命令字DSP_MCU_CMD。DSP读取判 断是否进行采样、是否进行FFT、是否计算有关电量。DSP完成指令后,将命令字相应位置1; 80C196检测该位,从双口RAM中读取数据。

3实验结果

利用信号发生器产生正弦信号,叠加2.5V的直流偏移后输入到两个A/D同步采集通道(通道0和通道8),进行测量实验。信号I视为电压无功控 制器待测量的电压信号;信号II视为电流信号。实验一的输入信号波形见图4,频率为50.63Hz,电压U(信号I)领先电流I(信号II)27.6度, 实验结果见表1;实验二输入信号波形见图5,频率为49.69Hz,电压U(信号I)落后电流I(信号II)44.5度实验,结果见表2。

TMS320F240的应用,极大地改善了电压无功控制器的性能,使得控制器能够对诸如过压、欠压、缺相、谐波越限等故障做出反应。同时电压无功控制器的数据处理与外围控制分开,有利于系统的模块化设计,提高了系统的可靠性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭