当前位置:首页 > 嵌入式 > 嵌入式教程

作者:张爱丽

单兵作战用机器人体积小,方便单兵野外作战时携带,可完成侦察、作战、排爆等任务。机器人能够代替人类到达不方便到达或危险的环境,确保了士兵的安全。车体是履带式设计,行动平稳。

1 单兵作战用机器人控制系统硬件设计

为了实现士兵对机器人的实时控制,需要配合使用遥操控终端。机器人与遥操控终端的工作原理如图1所示。



遥操控终端通过按钮、开关、摇杆采集工作人员的操控指令,将操控指令转换成数据,按照规定的格式通过串口发给无线电台,无线电台将该数据发送出去;机器人控制系统的无线电台接收到来自操控终端的控制指令后,按照操控指令控制机器人运动、武器击发,同时机器人控制系统采集机器人的GPS位置、电池电量、超声波避障信息等,把机器人信息打包后通过机器人上的无线电台发送给遥操控终端的电台,遥操控终端接收到机器人信息后,将其显示在人机界面上,以备士兵随时掌握机器人的实时信息。

单兵作战用机器人控制系统是基于DSP芯片及与其外围电路、电源电路组成。DSP芯片选用TMS320F2812。TMS320F2812是美国TI公司推出的C2000平台上的定点32位DSP芯片,主频150 MHz、处理性能可达150 MIPS,每条指令周期6.67 ns。

TMS320F2812包括4M可寻址程序空间和4M可寻址数据空间。同时片内具有128×16位的FLASH存储器和18K×16位的SRAM。TMS320F2812采用3_3 V和1.8 V供电,功耗低。TMS320F28 12的外部接口非常丰富,16路12位的ADC采集通道,SPI、SCI通信模块,多达56个复用I/O引脚。



单兵作战用机器人控制系统组成如图2所示。

1.1 I/O端口

TMS320F2812的GPIOA0-GPIOA3口设置成基本输入输出端口,端口配置及属性如表1所示。



超声波避障信号用于探测机器人前方0.5 m内是否有障碍物,如遇到障碍物,机器人可自动转弯避开。武器击发开关用于机器人上武器的击发控制,手电开关用于机器人上手电的开关控制,摄像头广窄角选择用于机器人上摄像头的广角与窄角的切换。

1.2 A/D端口

TMS320F2812的A/D转换器模块共有16个通道,模拟电压的输入范围是0~3 V。这里用了其中的2个通道,分别用来测量机器人上的2块24 V锂电池的电量。图3中电量测量电路分为3个部分:差分比例1:10电路,把24 V电压转换到0~2.4 V区间;隔离比例1:1电路,能有效的隔离输入电压与DSP的前端接口;电压钳位电路,将输入到DSP端口的电压钳位在3.3 V以内,防止电源电压意外浪涌时损坏DSP的A/D转换端口。2路24 V电池电压分别经过2路电量测量电路后,输入到DSP的ADCINA0、ADCINA2两个端口,根据采集到的电压值,可计算当前电池的电压,从而确定电池电量。



1.3 串 口

TMS320F2812的GPIOF4、GPIOF5配置成串口1,GPIOG4、GPIOG5配置成串口2。串口1接收GPS的信息,用来确定当前机器人的位置信息;串口2连接机器人电台,实现与遥操控终端电台的无线传输。机器人电台连接摄像头和麦克之后,能够把影音信息传送到遥操控终端的电台,遥操控终端的工作人员即可接收到机器人附近的视频、音频信息。

1.4 电机控制

机器人的前进、后退、左转、右转由左履带电机和右履带电机控制。机器人上的武器通过做上下、左右调节来瞄准目标。

DSP的XINTF是其外部接口,这里使用了XD0-XD11共12根数据线,经过电平转换为5 V电平后,连接到D/A转换芯片。D/A转换芯片选用了12位的AD664,可输出4路0~5V模拟电压,4路模拟电压作为控制电压输入到电机控制器,分别控制机器人左履带电机、右履带电机、武器上下调节电机、武器左右调节电机。
当电压为2.5 V时,电机停转;电压小于2.5 V时,电机反转;电压大于2.5 V时,电机正转。对于左履带和右履带,通过输出的控制电压,可实现车体前进、后退的无级变速,以及左、右转弯的运动控制。

1.5 电源供电电路

锂电池具有体积小、重量轻、容量大的特点。机器人内置2组24 V供电电池。第1组24 V电池为左履带电机、右履带电机、武器上下调节电机、武器左右调节电机供电。第2组24 V电池经过DC/DC模块.转换成12 V电压和5 V电压。12 V电压用来给机器人上的无线电台供电。5 V电压为控制电路供电,同时经过电源转换电路,转换成3.3 V和1.8 V电压为DSP供电。为了监测DSP芯片供电电压是否正常,增加了电压监控电路,当DSP芯片供电不正常时,可将此故障报送到电台发送到遥操控终端。



2 单兵作战用机器人控制系统软件设计

单兵作战用机器人控制系统软件分为主程序和中断服务程序两部分。主程序实现的流程如图5所示,上电初始化处理器的I/O端口、A /D端口、串口等资源,初始化完毕开始与遥操控终端软件进行通信,握手成功后,开启软件定时器、中断,定时采集机器人信息,包括超声波避障、电量测量值、GPS信息。



当串口2即机器人无线电台出现接收数据中断时,表明接受到来自遥操控终端的控制数据,此时处理器进入中断服务程序,如图6所示。中断程序首先将串口2接收到的数据保存到寄存器,然后将最新采集的机器人信息按照预定格式发送到串口2,通过机器人无线电台发送给遥操控终端。程序还需要根据串口2所接到的数据,按照预定的格式分配到处理器的各个端口,实现遥操控终端的控制指令,包括武器击发开关、手电开关、摄像头广角窄角切换、左履带电机转动方向和速度、右履带电机转动方向和速度、武器高低转动方向和速度、武器左右转动方向和速度。



3 结束语

单兵作战用机器人便于携带、操控简单、可广泛应用于军队、武警部队。文中所设计的单兵作战用机器人控制系统实时性高、设计合理,理论试验验证可行,在实际应用中得到了用户的认可。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭