当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]数十年来,芯片制造商和整个社会都受益于摩尔定律。摩尔定律以一种快速而可预测的速度,提供了更强大、更廉价的计算能力。众所周知,这条规律实际上是两种趋势——芯片速度变快和芯片尺寸缩小。就像上了发条一样,晶体管密度每两年翻一番,计算能力也相应提高。

数十年来,芯片制造商和整个社会都受益于摩尔定律。摩尔定律以一种快速而可预测的速度,提供了更强大、更廉价的计算能力。众所周知,这条规律实际上是两种趋势——芯片速度变快和芯片尺寸缩小。就像上了发条一样,晶体管密度ÿ两年翻一番,计算能力也相应提高。

然后,技术达到了极限,经济开始发挥作用。芯片制造行业在很大程度上是Χ绕着英特尔(Intel)和三星电子(Samsung Electronics)等少数受益于摩尔定律的巨头聚集到一起的,但它正在朝着一个更加分散的结构发展,不同的芯片做不同的事情——就像早期的大众计算市场那样。可以说,这样的趋势比任何其他公司都更有可能威胁英特尔在设计和制造领域的主导地λ。

技术即将到达极限

大约15年前,芯片速度的增速减慢了,这是因为更快的处理器产生了更集中的热量。2005年,一台高端设备的运行频率高达3.8千兆赫。今天它的替代频率上升到4.4千兆赫。如果制造商保持以前的更新速度,今天的处理器的工作速度将会是现在的10倍多,而且差不多和太阳一样热。

在芯片上塞入更多晶体管的能力仍然存在,但这一趋势正在放缓,在向市场推出新芯片方面出现意想不到的延误正变得越来越普遍。英特尔最初表示,10纳米芯片将于2015年上市,但此后该公司一直在承诺很快将大规模量产。并且后面问题将变得更糟:如果晶体管进一步收缩,它们将受到电子不可预知的影响。

先进晶圆厂成本在上升

摩尔第二定律是指尖端芯片生产工厂的成本ÿ四年翻一番,这并不为人所知。但不幸的是,它依然是有效的。台积电的数据显示,一座顶级的新工厂目前的成本约为200亿美元。成本不断上升,只有三家公司试图生产尖端芯片,分别是英特尔、台积电和三星电子。去年,这些公司的总收入大约是一座先进工厂成本的六倍。而在2008年,它们的收入大约是一座工厂成本的11倍,那时的竞争对手也比现在更多。

目前,在个人电脑通用芯片领域至少是这样,摩尔定律推动了销量、利润率,因此尤其是英特尔在芯片创新和晶圆厂的开发上投入了巨额的资金。但麻省理工学院(MIT)的尼尔•汤普森(Neil Thompson)和斯温贾•斯潘努斯(Svenja Spanuth)认为,技术进步放缓和成本上升可能会导致行业分裂。

对于特定的任务,专用芯片可能更快,但它们需要时间来设计,并进行小规模的试产运行。目前英特尔拥有技术优势是安全的,因为下一代芯片将比基于上一代芯片的专用芯片强大得多,也便宜得多。但创新放缓和工厂成本上升正在打破这种局面。

创新停止了吗?

不,只是进步更困难,更难预测。提高速度的一种方法是改变程序以利用新型芯片。传统处理器开始时一次只能处理一项任务,速度很快,但程序员越来越依赖于更专业的芯片。例如,英伟达的专长就在于所ν的图形处理单元,它可以同时执行多任务计算。

幸运的是,这对训练人工智能系统也很有用。这就是为什ô英伟达的股价一直在上涨,在过去5年里上涨了8倍。但它仍然是一个利基市场,因为许多计算任务需要按顺序完成。

另一个不断增长的细分市场是可编程芯片。Xilinx是最大的竞争者,但英特尔凭借其在2015年以167亿美元收购Altera的交易占据了相当大的市场份额。这些芯片不是很容易使用,但在某些情况下,它们可以实现更高速度且更低功耗。例如,微软(Microsoft)就利用它们来加速其云计算平台上运行的应用程序。

这种方法的另一个版本是为特定的任务设计专门的芯片。这在智能手机中已经很常见了,比如苹果手机就有自己的芯片。谷歌也使用专门的芯片在其数据中心运行已建立的机器学习程序。定制化意ζ着这些芯片速度快,耗电量少。缺点是它们不灵活,编码困难,而且成本相对较高,因为开发成本不会分摊到大型、多用途应用中。

接下来会发生什ô?

摩尔定律为所有使用计算机的人带来了好处。英特尔的处理器很容易嵌入到许多应用程序中,它们在速度上的稳定增长为ÿ个使用它们的人带来了更好的性能。

芯片领域下一波的业绩增长可能并不均衡。可以利用图形处理或可编程芯片的领域仍将从改进的芯片中获益。更专业的领域,比如天气预报,将会发展缓慢——除非用户能够将他们的活动汇总到一个云计算平台上。

与此同时,编写更高效的软件肯定会带来好处,尽管这种好处更难获得。这可能导致拥有不同产品应用领域的芯片制造商出现一种“回到δ来”的状态,即需要在某一行业内开发自己的芯片和软件,以实现最高效率。

40年前,许多顶级芯片制造商都是由IBM、惠普(Hewlett-Packard)和美国电话电报公司(AT&T)等公司¢断经营的。为了提供快速的性能,硬件和软件通常是专有的。通用微处理器的崛起改变了这一点,使得英特尔成为全球最大的芯片设计和制造商。

英特尔的市值约为2,400亿美元,接近历史最高水平。然而,随着苹果和谷歌等公司设计出运行自己代码的更专业芯片,这家美国巨头的影响力在后摩尔定律时代可能面临挑战。有一个明显的不同——虽然半导体设计可能会分裂,但像台积电和三星这样的一些大公司可能仍将是生产芯片的公司,因为它们拥有建造现代化晶圆厂的领先实力。

尽管通用处理器仍将有一个巨大的市场,但其增长率可能遵循另一条众所周知的规律:增速必然下降。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭