当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]莫斯科物理技术学院(MIPT)宣称成功为ReRAM开发出新的制程,可望为其实现适于3D堆叠的薄膜技术…

ReRAM代表电阻式RAM,将DRAM的读写速度与SSD的非易失性结合于一身。换句话说,关闭电源后存储器仍能记住数据。如果ReRAM有足够大的空间,一台配备ReRAM的PC将不需要载入时间。

莫斯科物理技术学院(MIPT)宣称成功为ReRAM开发出新的制程,可望为其实现适于3D堆叠的薄膜技术…

可变电阻式随机存取记忆体(ReRAM)是一种可望取代其他各种储存类型的“通用”记忆体,不仅提供了随机存取记忆体(RAM)的速度,又兼具快闪记忆体( flash)的密度与非挥发性。然而,目前,flash由于抢先进入3D时代而较ReRAM更胜一筹。

如今,莫斯科物理技术学院(Moscow Institute of Physics and Technology;MIPT)的研究人员已成功为ReRAM开发出新的制程,可望为其实现适于3D堆叠的薄膜技术。

ReRAM的研发一般采用忆阻器进行,其中,在介电层中迁移的氧空缺(oxygen vacancy),将电介质的电阻改变为‘1‘与‘0‘。除了MIPT,还有来自4DS Memory Ltd.、Crossbar Inc.、HP Inc.、Knowm Inc.以及美国德州莱斯大学(Rice University)的研究人员们也为ReRAM创造了原型。

针对3D ReRAM,MIPT科学家Konstantin Egorov表示,“我们不仅需要在介电层中形成氧空缺,还必须为其进行检测”。为此,MIPT的研究人员们采用的方法是,在出现氧空缺的介电层中,观察其能隙中的电子状态。

Egorov说:“为了研究在氧化钽薄膜生长过程中形成的氧空缺,我们使用了一种整合生长PEALD(电浆辅助原子层沉积)和分析XPS(X射线光电子能谱仪)腔室(以真空管相互连接)的实验丛集。该丛集让我们能生长和研究沉积层,而不至于破坏真空状态。”

他强调,“这一点非常重要,因为一旦从真空中取出实验样本,介电质的奈米层就会在其表面上氧化,导致氧空缺的消失。”

 

用于生长和研究薄膜的实验丛集,可在真空状态下实现3D堆叠

任何半导体研究实验室都可以建构这种独特的原子层沉积(ALD)丛集,其方式是连接PEALD和XPS腔室,然后再添加自动操纵器,在腔室之间传输晶圆。除了样本测试晶圆以外,在大量生产时并不需要这种丛集。然而,必须建立一条的的组装线,以补偿ALD薄膜缓慢的生长速度。

如果这些研究取得成功,MIPT声称所产生的ReRAM就可以垂直堆叠,成就一种可克服3D flash限制的通用记忆体;目前,3D flash仅限于64层。

 

与沉积氧空缺氧化钽薄膜有关的化学反应阶段(左),以及透过X射线光电子能谱仪进行分析的结果(右)

虽然ALD的生长缓慢,但它能实现3D结构的共形涂层,取代MIPT和其他研究实验室迄今所使用的奈米薄膜沉积技术。其关键的区别在于ALD依次将基底暴露于前体材料和反应物材料,并且取决于二者之间的化学反应以产生主动层。

MIPT的技术还使用连接至金属前体的化学分子配体,以便加速化学反应,但在用于元件的主动层之前必须先移除这种配体。

MIPT首席研究员Andrey Markeev说:“沉积缺氧薄膜需要找到正确的反应物,才能移除金属前体中所含的配体,并且控制涂层的氧含量。因此,在经过多次实验后,我们成功地使用含氧的钽前体,以及电浆激发的氢反应物。”

 

MIPT研究人员Dmitry Kuzmichev、Konstantin Egorov、Andrey Markeev和Yury Lebedinskiy,及其背后的原子层沉积机器

接下来,研究人员打算为这一流程进行最佳化,并提高ALD的速度,从而为3D ReRAM实现大量生产。

MIPT的研究资金是由俄罗斯科学基金会(RSF)和MIPT共同提供。这项研究细节已发表于《ACS应用材料和介面》(ACS Applied Materials & Interfaces)期刊的“以电浆辅助原子层沉积控制TaOx薄膜的氧空缺,实现可变电阻式切换的记忆体应用”一文中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭