当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]嵌入式系统产品的加密和解密永远是一对矛盾的统一体。为了保护产品研发人员的技术成果,研究新型加密技术是非常有必要的。这里我们聊聊使用芯片UID加密的方案。

嵌入式系统产品的加密和解密永远是一对矛盾的统一体。为了保护产品研发人员的技术成果,研究新型加密技术是非常有必要的。这里我们聊聊使用芯片UID加密的方案。

首先需要明确的是,没有一种加密是“绝对”可靠的,但是加密手段可以增加非法使用者的解密成本,借此来防止技术被“轻易”盗取。本次以LPC1000的UID加密方案为例进行介绍。

一、LPC1000系列的加密方案

通过分析得出,基于CortexM0或CortexM3内核的LPC1000系列MCU通过软件加密的方法有两种:

1、使用代码读保护机制,限制用户访问片内Flash;

2、通过芯片UID并添加加密算法使每片MCU内的程序具有唯一性。

代码读保护机制是通过使能系统中的不同安全级别,以便限制访问片内Flash,本次不做重点介绍。

二、UID加密

UID是唯一标识符(unique identifier),在LPC1000系列微控制器的每一颗芯片都具有全球唯一的标识符,该标识符为128位二进制序列。因此我们可以利用芯片UID的唯一性对程序进行加密,使每一个产品中的程序也具有唯一性,即使非法使用者获取了MCU中的程序复制到其他芯片中也是不能正常运行的,从而达到保护开发者的知识产权不被侵犯和盗用的目的。

三、LPC1000的UID加密方案

基本思路是使用上位机软件通过编程器读取芯片的UID,经加密算法运算后生成密钥,下载程序的同时向MCU的Flash中某个地址写入密钥;MCU上电后,首先读取芯片的UID,再通过与上位机相同的加密算法运算后计算出密钥,并与之前写入Flash中的密钥比较,若相同则继续执行用户程序,否则跳入死循环或执行程序开发者指定的代码。

 

图1 LPC1000 UID加密方案流程图

实现此方案需要准备的资源如下。

硬件资源:

• LPC1766FBD100芯片;

• SmartPRO 5000U-PLUS编程器;

• QFP100-NXP适配座;

• SmartCortex M3-1700开发板(测试用,非必需)。

软件资源:

• SmartPRO 2008 2.0.56.exe上位机软件;

• Programmer.rar编程器上位机UID加密补丁;

• Uid.rar编程器上位机UID加密算法;

• LPC1766在Keil4下的工程模板;

• Keil4开发环境;

• Microsoft Visual C++ 6.0。

1、下位机

下位机(即LPC1766芯片)上电并初始化后,首先读取芯片的UID,解析密钥并与Flash中的密钥比较判断后,再继续执行用户代码。这里我们举例采用的加密算法是将UID的补码作为密钥,加密方法比较简单,用户可自行对加密算法进行修改,写出复杂的加密算法。

读取芯片UID的方法是通过调用芯片内部的IAP函数实现,如图所示。

 

图2 读取UID

2、上位机

在下位机LPC1766的程序编写完成并生成hex或bin文件后,按照以下步骤对MCU进行加密:

首先,在Microsoft Visual C++ 6.0下编写加密算法,这里我们已经编写完成,仅需解压uid.rar并打开其中的VC工程。用户需要在uid.cpp中的UidAlgorithm函数中添加自定义算法,如图。

 

图3 加密算法工程

加密算法编写完成后,编译将生成一个名为uid.dll的算法文件。

第二步,安装SmartPRO 2008软件,我们默认安装在C:Program Files路径下;

第三步,安装SmartPRO 2800加密补丁,方法是将Programmer.rar解压到C:Programd FilesSmartPRO 2008Programmer路径下,覆盖原来的文件;

第四步,将加密算法生成的uid.dll文件复制到C:Programd FilesSmartPRO 2008Programmer下,SmartPRO 2008启动后将会自动调用uid.dll;

第五步,连接硬件,将LPC1766芯片放入适配座ZY503D中,连接USB通信电缆和电源;

第六步,烧写文件,启动SmartPRO 2008软件,选择芯片“LPC1766@LQFP100”,打开烧录文件(在Keil编写下位机程序时生成的hex或bin文件 )。此时会出现一个如图4的特殊提示,这是因为Keil编译器在编译时没有将Flash中前8个字单元的内容进行代码有效校验和的填充而产生该警告,点击“确定”即可,编译器在下载过程中会调用校验算法自动添加校验。关于代码有效校验和填充的相关内容请参考LPC1766用户手册中“Flash编程”一章的相关内容。

 

图4 用户代码无效提示

第七步,开始下载,点击“组合”即可,默认执行的是擦除、编程、校验三个步骤的结合。

成功编程后,如果重新读取Flash,打开缓冲区,定位到0x00002000处,可以看到已经写入的密钥。如图5所示,与此前设计的加密算法和加密预期效果一致。

 

图5 缓冲区查看密钥

验证方法:取下适配座中的芯片,焊接到TinyARMT17核心板上,查到SmartCortex M3-1700开发板底板上,连接P0.11到BEEP插针,如所示。开发板上电后即可听到蜂鸣器的鸣叫。以此验证芯片计算出的密钥与Flash中写入的密钥校验一致,芯片程序正常运行。

 

图6 开发板验证

经此方法向芯片下载程序后,若有产品盗版者试图将程序读出然后复制到其他芯片上使用,程序将停留在判断密钥是否匹配语句,导致程序不再向下执行,从而防止软件程序被非法使用者盗用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭