当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]Cypress CY8CKIT-025分辨率0.1度C温度测量解决方案

Cypress公司的CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)包括5个温度传感器,能方便快速测量和控制温度,温度测量分辨率达到0.1度C.CY8CKIT-025 EBK设计和CY8CKIT-030 PSoC 3开发板或CY8CKIT-001 PSoC开发板 一起使用,提供完整的单片温度检测和控制解决方案.本文介绍了PSoC®5: CY8C52系列产品主要特性,功能框图,ARM Cortex-M3框图以及CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)主要特性,电路图,材料清单和PCB元件布局图.

With its unique array of configurable blocks, PSoC® 5 is a true system-level solution providing microcontroller unit (MCU), memory, analog, and digital peripheral functions in a single chip. The CY8C52 family offers a modern method of signal acquisition, signal processing, and control with high accuracy, high bandwidth, and high flexibility. Analog capability spans the range from thermocouples (near DC voltages) to ultrasonic signals. The CY8C52 family can handle dozens of data acquisition channels and analog inputs on every GPIO pin. The CY8C52 family is also a high-performance configurable digital system with some part numbers including interfaces such as USB and multimaster I2C. In addition to communication interfaces, the CY8C52 family has an easy to configure logic array, flexible routing to all I/O pins, and a high-performance 32-bit ARM® Cortex™-M3 microprocessor core. Designers can easily create system level designs using a rich library of prebuilt components and boolean primitives using PSoC Creator™, a hierarchical schematic design entry tool. The CY8C52 family provides unparalleled opportunities for analog and digital bill of materials integration while easily accommodating last minute design changes through simple firmware updates.

CY8C52主要特性:

 32-bit ARM Cortex-M3 CPU core

 DC to 40 MHz operation

 Flash program memory, up to 256 KB, 100,000 write cycles, 20-year retention and multiple security features

 Up to 64 KB SRAM memory

 128 bytes of cache memory

 2-KB electrically erasable programmable read-only memory (EEPROM) memory, 1 million cycles, and 20 years retention

 24-channel direct memory access (DMA) with multilayer AMBA high-performance bus (AHB) bus access

• Programmable chained descriptors and priorities

• High bandwidth 32-bit transfer support

 Low voltage, ultra low power

 Operating voltage range: 2.7 V to 5.5 V

 6 mA at 6 MHz

 Low power modes including:

• 2-μA sleep mode

• 300-nA hibernate mode with RAM retention

 Versatile I/O system

 46 to 70 I/Os (60 GPIOs, 8 SIOs, 2 USBIOs))

 Any GPIO to any digital or analog peripheral routability

 LCD direct drive from any GPIO, up to 46 × 16 segments

 CapSense® support from any GPIO

 1.2 V to 5.5 V I/O interface voltages, up to four domains

 Maskable, independent IRQ on any pin or port

 Schmitt trigger transistor-transistor logic (TTL) inputs

 All GPIOs configurable as open drain high/low, pull up/down, High-Z, or strong output

 25 mA sink on SIO

 Digital peripherals

 20 to 24 programmable logic device (PLD) based universal digital blocks (UDBs)

 Full-Speed (FS) USB 2.0 12 Mbps using a 24 MHz external oscillator

 Four 16-bit configurable timer, counter, and PWM blocks

 Library of standard peripherals

• 8-, 16-, 24-, and 32-bit timers, counters, and PWMs

• SPI, UART, and I2C

• Many others available in catalog

Library of advanced peripherals

• Cyclic redundancy check (CRC)

• Pseudo random sequence (PRS) generator

• Local interconnect network (LIN) bus 2.0

• Quadrature decoder

Analog peripherals (2.7 V  VDDA  5.5 V)

 1.024 V ±1% internal voltage reference

 Successive approximation register (SAR) analog-to-digital converter (ADC), 12-bit at 700 ksps

 One 8-bit, 5.5-Msps current DAC (IDAC) or 1-Msps voltage DAC (VDAC)

 Two comparators with 95-ns response time

 CapSense support

 Programming, debug, and trace

 Serial wire debug (SWD) and single-wire viewer (SWV) interfaces

 Cortex-M3 flash patch and breakpoint (FPB) block

 Cortex-M3 data watchpoint and trace (DWT) generates data trace information

 Cortex-M3 Instrumentation Trace Macrocell (ITM) can be used for printf-style debugging

 DWT and ITM blocks communicate with off-chip debug and trace systems via the SWV interface

 Bootloader programming supportable through I2C, SPI, UART, USB, and other interfaces[!--empirenews.page--]

 Precision, programmable clocking

 3 to 24 MHz internal oscillator over full temperature and voltage range

 4 to 25 MHz crystal oscillator for crystal PPM accuracy

 Internal PLL clock generation up to 40 MHz

 32.768 kHz watch crystal oscillator

 Low power internal oscillator at 1, 33, and 100 kHz

 Temperature and packaging

 –40℃ to +85℃ degrees industrial temperature

 68-pin QFN and 100-pin TQFP package options

 

 

图1.CY8C52简化方框图:包括

 ARM Cortex-M3 CPU subsystem

 Nonvolatile subsystem

 Programming, debug, and test subsystem

 Inputs and outputs

 Clocking

 Power

 Digital subsystem

 Analog subsystem

 

 

图2.CY8C52中ARM Cortex-M3框图

CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)

The CY8CKIT-025 PSoC® Precision Analog Temperature Sensor Expansion Board Kit (EBK) includes 5 temperature sensors and examples projects to make temperature sensing and control design quick and easy. This kit enables the designer to measure temperature accurately to a resolution of 0.1℃.

The CY8CKIT-025 EBK is designed for use with the CY8CKIT-030 PSoC 3 Development Kit and the CY8CKIT-001 PSoC Development Kit (all sold separately). Combining CY8CKIT-025 EBK with a development kit provides a complete single chip temperature sensing and control solution.

CY8CKIT-025 EBK包括:

PT100 Class B Resistive Temperature Detector (RTD)

Type K Thermocouple

NTC Thermistor

2 Temperature Diodes (2N3904 transistors)

DS600 IC temperature sensor

Examples projects for temperature sensing measurement, combined temperature and voltage measurement and fan control

Includes a bonus CY8CKIT-012 PSoC Prototyping and Development Expansion Board

Quick Start Guide

Resource CD

温度传感器性能比较表:

 

 

 

 

图3.CY8CKIT-025 PSoC精密模拟温度传感器EBK外形图

 

 

图4.CY8CKIT-025 PSoC精密模拟温度传感器EBK电路图

CY8CKIT-025 PSoC精密模拟温度传感器EBK材料清单:

 

 

 

 

图5.CY8CKIT-025 PSoC精密模拟温度传感器EBK PCB元件布局图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

【2025年4月18日, 德国慕尼黑讯】在不断发展的嵌入式系统领域,英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)将继续为开发者提供先进的微控制器(MCU)解决方案。其AURIX™、TRAVEO...

关键字: MCU PSOC 人机界面

【2025年4月11日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出用于AURIX™、TRAVEO™和PSOC™的可扩展软件包产品组合...

关键字: PSOC 物联网 编译器

您是否曾经想要利用PSOC™6的强大功能而无需陡峭的学习曲线?现在你可以了!随着PSOC™6在Arduino平台上的可用性,新的可能性被解锁。

关键字: Arduino PSOC DPS368 气压传感器

在工业生产、科学研究以及各类温度测量场景中,热电偶作为一种常用的测温元件,发挥着重要作用。然而,其测量精度往往受到各种干扰因素的影响,解决热电偶的抗干扰问题成为确保温度测量准确性和可靠性的关键。

关键字: 热电偶 抗干扰 温度测量

热电偶(thermocouple)作为工业接触式温度测量的核心元件,以其直接的温度测量能力及将温度信号转换为热电动势信号的特性,广泛应用于各种工业测温场合。这种转换过程通过电气仪表(二次仪表)实现,将热电势信号准确转换为...

关键字: 热电偶 温度测量 工业自动化

电阻温度检测器(RTD)温度测量系统是否有一致的误差?高精度的RTD温度测量系统可以设计而不需要校准吗?本文介绍了一种高精度RTD温度测量系统,该系统采用误差补偿的方法,在不需要校准的情况下,在-25℃到+140℃的范围...

关键字: RTD 温度测量 PT100

一般来说,励磁电流越大,温度测量的灵敏度就越高,从而提高了温度测量的性能。然而,较大的励磁电流并不总是更好的。一方面,激发电流在RTD上产生的热能与电流的平方成正比,电流越大,自热效应越大,这可能对温度测量产生重大影响。...

关键字: RTD 温度测量 激励源

在计算系统的理论性能后,有必要通过测量验证系统的实际性能。对于温度测量系统,最重要的性能指标是测量温度值与真实温度值之间的误差。因此,为了测量这一规格,需要一个精确的、大范围的温度源。偶然校准具有丰富的温度校准经验,其产...

关键字: RTD 温度测量 误差分析

接上一篇,尽管14条RTD测量通道的温度测量误差曲线具有一致的趋势,但由于产量的变化,它们的斜率和截流量在一定程度上有所不同。为了对这一过程产生的所有RTD测量通道进行误差补偿,需要找到14条温度测量误差曲线所包围的区域...

关键字: RTD 温度测量 误差校准

Edge AI将成为物联网发展不可或缺的技术,通过在设备本地处理数据,提高了响应速度和操作效率,同时还增强了数据安全和用户隐私保护。根据ABI Research关于TinyML市场的研究,预计从2023年到2028年,边...

关键字: 物联网 边缘AI 英飞凌 PSOC EdgeAI
关闭