当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]中断(interrupt)被定义为一个事件,该事件改变处理器执行的指令顺序,这样的事件与CPU芯片内外部硬件电路产生的电信号相对应。中断通常分为同步(synchronous)中断和异步(asynchronous)中断。同步中断指的是当指令执行时由CPU控制单元产生的,之所以称为同步,是因为只有在一条指令终止执行后CPU才会发出中断。异步中断是由其他硬件设备依照CPU时钟信号随机产生的。在Intel处理器中,同步中断被称为异常,异步中断被称为中断。

中断向量

中断(interrupt)被定义为一个事件,该事件改变处理器执行的指令顺序,这样的事件与CPU芯片内外部硬件电路产生的电信号相对应。中断通常分为同步(synchronous)中断和异步(asynchronous)中断。

同步中断指的是当指令执行时由CPU控制单元产生的,之所以称为同步,是因为只有在一条指令终止执行后CPU才会发出中断。

异步中断是由其他硬件设备依照CPU时钟信号随机产生的。

在Intel处理器中,同步中断被称为异常,异步中断被称为中断。

异常(同步中断)

当CPU执行指令时探测到一个异常,会产生一个处理器探测异常(processor-detected exception),可以进一步区分,这取决于CPU控制单元产生异常时保存在内核堆栈eip寄存器的值。

故障

故障(fault),通常可以纠正,一旦纠正,程序就可以重新开始,保存在eip寄存器中的值是引起故障的指令地址。

陷阱

陷阱(trap)在陷阱指令执行后立即报告,内核把控制权烦给程序后就可以继续它的执行而不失连续性。保存在eip中的值是一个随后要执行的指令地址。陷阱的主要作用是为了调试程序。

异常终止

异常中止(abort),发生一个严重的错误,控制单元出了问题,不能在eip寄存器中保存引起异常的指令所在的确切位置。异常中止用于报告严重的错误,例如硬件故障或系统表中无效的值或者不一致的值。这种异常会强制中止进程。

编程异常(软中断)

编程异常(programmed exception),在编程者发出的请求时发送,是由int或int3指令触发的。

中断(异步中断)

非屏蔽中断

非屏蔽中断,有一些危险的事件才能引起非屏蔽中断,例如硬件故障,非屏蔽中断总是由CPU辨认。

屏蔽中断

可屏蔽中断,I/O设备发出的所有中断请求(IRQ)都产生可屏蔽中断,一个屏蔽的中断只要还是屏蔽的,控制单元就可以忽略它。

中断描述符表

IDT

IDTR 中断描述符表寄存器,通过IDTR找到中断描述符表。

每个表项有8个字节组成。里面有段选择符和偏移等信息。

段选择符呢就要找全局描述符表(GDT)和局部描述符表(LDT),GDT和LDT有段的信息。分别用GDTR和LDTR找到它们。

中断描述符里每个表项叫做门描述符,类型分别为任务门、中断门、陷阱门和系统门。

1. 任务们:Linux 并没有采用任务门来进行任务切换。

2. 中断门:当控制权通过中断门进入中断处理程序时,处理器清 IF 标志,即关中断。避免嵌套中断的发生。DPL=0

3. 陷阱门:控制权通过陷阱门进入处理程序时 维持 IF 标志位不变,也就是说,不关中断。DPL=0

4. 系统门:这是 Linux 内核特别设置的,用来让用户态的进程访问 Intel 的陷阱门,因此,门描述 符的 DPL 为 3。通过系统门来激活 4 个 Linux 异常处理程序,它们的向量是 3、4、5 及 128, 也就是说,在用户态下,可以使用 int3、into、bound 及 int0x80 四条汇编指令。

TR

补充:

任务寄存器TR

TR用于寻址一个特殊的任务状态段(Task State Segment,TSS)。TSS中包含着当前执行任务的重要信息。

TR寄存器用于存放当前任务TSS段的16位段选择符、32位基地址、16位段长度和描述符属性值。它引用GDT表中的一个TSS类型的描述符。

指令LTR和STR分别用于加载和保存TR寄存器的段选择符部分。

当使用LTR指令把选择符加载进任务寄存器时,TSS描述符中的段基地址、段限长度以及描述符属性会被自动加载到任务寄存器中。当执行任务切换时,处理器会把新任务的TSS的段选择符和段描述符自动加载进任务寄存器TR中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭