当前位置:首页 > 电源 > 电源-能源动力
[导读]电池技术发展至今,用来估算SOC的方法已经出现了很多种,既有传统的电流积分法、电池内阻法、放电试验法、开路电压法、负载电压法,也有较为创新的Kalman滤波法、模糊逻辑理

电池技术发展至今,用来估算SOC的方法已经出现了很多种,既有传统的电流积分法、电池内阻法、放电试验法、开路电压法、负载电压法,也有较为创新的Kalman滤波法、模糊逻辑理论法和神经网络法等,各种估算方法都有自己的优缺点,下面对常用的几种SOC方法进行简要介绍:

 

 

(1)电流积分法

电流积分法也叫安时计量法,是目前在电池管理系统领域中应用较为普遍的SOC估算方法之一,其本质是在电池进行充电或放电时,通过累积充进或放出的电量来估算电池的SOC,同时根据放电率和电池温度对估算出的SOC进行一定的补偿 。如果将电池在充放电初始状态时的SOC值定义为SOCt0,那么t时刻后的电池剩余容量SOC则为:

式中,Q为电池额定容量,n为充放电效率,也叫库仑效率,其值由电池充放电倍率和温度影响系数决定,i为t时刻的电流。与其它SOC估算方法相比,电流积分法相对简单可靠,并且可以动态地估算电池的SOC值,因此被广泛使用。但该方法也存在两方面的局限性:其一,电流积分法需要提前获得电池的初始 SOC 值,并且要对流入或流出电池的电流进行精确采集,才能使估算误差尽可能小;其二,该方法只是以电池的外部特征作为SOC估算依据,在一定程度上忽视了电池自放电率、老化程度和充放电倍率对电池SOC的影响,长期使用也会导致测量误差不断累积扩大,因此需要引入相关修正系数对累积误差进行纠正。

(2)放电试验法

放电试验法是将目标电池进行持续的恒流放电直到电池的截止电压,将此放电过程所用的时间乘以放电电流的大小值,即作为电池的剩余容量。该方法一般作为电池 SOC 估算的标定方法或者用在蓄电池的后期维护工作上,在不知道电池 SOC 值的情况下采用此方法,相对简单、可靠,并且结果也比较准确,同时对不同种类的蓄电池都有效。但是放电试验法也存在两点不足:第一,该方法的试验过程需要花费大量的时间;第二,使用此方法时需要将目标电池从电动汽车上取下,因此该方法不能用来计算处于工作状态下的动力电池。

(3)开路电压法

开路电压法是根据电池的开路电压(Open Circuit Voltage, OCV)与电池内部锂离子浓度之间的变化关系,间接地拟合出它与电池SOC之间的一一对应关系。在进行实际操作时,需要将电池充满电量后以固定的放电倍率(一般取1C)进行放电,直到电池的截止电压时停止放电,根据该放电过程获得OCV与SOC之间的关系曲线。当电池处于实际工作状态时便能根据电池两端的电压值,通过查找OCV-SOC关系表得到当前的电池SOC。尽管该方法对各种蓄电池都有效,但也存在自身缺陷:首先,测量OCV前必须将目标电池静置 1h 以上,从而使电池内部电解质均匀分布以便获得稳定的端电压;其次,电池处于不同温度或不同寿命时期时,尽管开路电压一样,但实际上的SOC可能差别较大,长期使用该方法其测量结果并不能保证完全准确。因此,开路电压法与放电试验法一样,并不适用于运行中的电池SOC估算。

(4)Kalman滤波法

Kalman滤波法是美国数学家卡尔曼(R.E.Kalman)在上世纪60年代初发表的论文《线性滤波和预测理论的新成果》中提出的一种新型最优化自回归数据滤波算法。该算法的本质在于可以根据最小均方差原则,对复杂动态系统的状态做出最优化估计。非线性的动态系统在卡尔曼滤波法中会被线性化成系统的状态空间模型,在实际应用时系统根据前一时刻的估算值与当前时刻的观测值对需要求取的状态变量进行更新,遵循“预测—实测—修正”的模式,消除系统随机存在的偏差与干扰。使用 Kalman 滤波法估算动力电池的 SOC 时,电池以动力系统的形式被转化为状态空间模型,SOC 则变成为了该模型内部的一个状态变量。建立的系统是一个线性离散系统。

由于Kalman滤波法不仅能够修正系统初始误差, 还能有效地抑制系统噪声,因此在运行工况非常复杂的电动汽车动力电池的SOC估算中,具有显着的应用价值。不过该方法同样存在两点缺陷:其一,Kalman滤波法估算SOC的精度很大程度上取决于电池模型的准确程度,工作特性本身就呈高度非线性化的动力电池,在Kalman滤波法中经过线性化处理后难免存在误差,如果模型建立得不够准确,其估算的结果也并不一定可靠;其二,该方法涉及的算法非常复杂,计算量极大,所需要的计算周期较长,并且对硬件性能要求苛刻。

(5)神经网络法

神经网络法是模拟人脑及其神经元用以处理非线性系统的新型算法,无需深入研究电池的内部结构,只需提前从目标电池中提取出大量符合其工作特性的输入与输出样本,并将其输入到使用该方法所建立系统中,就能获得运行中的SOC 值。该方法后期处理相对简单,即能有效避免Kalman滤波法中需要将电池模型作线性化处理后带来的误差,又能实时地获取电池的动态参数。但是神经网络法的前期工作量比较大,需要提取大量且全面的目标样本数据对系统进行训练,所输入的训练数据和训练的方式方法在很大程度上都会影响SOC的估计精度。此外,在电池温度、自放电率和电池老化程度不统一等因素的复杂作用下,长期使用该方法估算同一组电池的SOC值,其准确性也会大打折扣。因此,在动力电池的SOC估算工作中该方法并不多见。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭