当前位置:首页 > 物联网 > 网络层
[导读]引言随着低压电力载波技术的飞速发展,使载波通信技术的实际应用变为现实。电力部门及时地把这项科技进步成果应用于抄表工作当中,将传统的人工现场抄表方式改为自动远程抄表方式。为了实现这种转变,需要配备自动远

引言

随着低压电力载波技术的飞速发展,使载波通信技术的实际应用变为现实。电力部门及时地把这项科技进步成果应用于抄表工作当中,将传统的人工现场抄表方式改为自动远程抄表方式。为了实现这种转变,需要配备自动远程抄表系统,一种方案是把用户正在使用的电子式电能表换成具有载波功能的电子式电能表,直接通过电力线把用户的用电信息传送到数据集中器中,再由数据集中器将各个用户的用电信息经以太网或用GPRS通信方式发送到抄表管理中心;另一种方案是不必更换用户正在使用的电能表,只需把若干电能表的脉冲输出线接到一块载波抄表采集器上,用采集器接收这些电能表的用电信息,再用载波通信方式通过电力线将用电信息经过数据集中器,最终传递到抄表管理中心。显然前一种方案所用的设备投资要远大于后者,因而,载波抄表采集器的使用将为自动远程抄表系统在电力行业的推广普及提供了一种价格低廉而又切实可行的途径。本文基于PL3105芯片研制成功的载波抄表采集器就是这种采集器之一。

硬件设计

载波抄表采集器是自动远程抄表系统的一个重要环节,它能够把一些用户电能表的用电量,通过脉冲数据线采集到载波抄表采集器中,一方面将这些用电量存储在采集器的存储单元内,以便于显示和查询;另一方面利用低压电力线以载波通信方式把它们传给远处的数据集中器。

本载波抄表采集器是根据微处理器PL3105在电力线载波通信方面所具有的优越性能而设计的,成为一种具有数据采集、显示、查询以及远程传输等功能的智能仪器。它的硬件电路是由PL3105单元、脉冲采集单元、载波通信单元、红外通信单元、数据存储单元、数据显示单元和电源单元等部分组成,其硬件结构框图如图1所示。以下分别对部分单元的硬件设计进行阐述。

图1 载波抄表采集器硬件结构框图

PL3105

PL3105是专为面向未来的开放式自动抄表、智能信息家电以及远程监控系统而设计的单芯片片上系统,它采用8051指令兼容的高速微处理器,软件易于开发,具有8/16位双模式ALU、8倍速于标准51。尤其在电力线载波通信方面具有更大的优势,它的扩频通信单元是 PL2000 系列专用电力线载波通信集成电路的升级内核,具有更强的抗干扰能力,更高的数据通信速率和更大的软件可配置灵活性。

脉冲采集单元

采集单元设计了21个采集通道,可满足住宅小区一个单元用户的需要。在设计这部分电路时,为了增加载波抄表采集器对外界各种干扰的抵抗能力,采用光耦器件NEC2501来隔离采集器的内、外信号,并为外部输入脉冲信号提供独立的电源供电。采集到的脉冲信号经光耦器件转换后,通过三态放大收发器MC74HC245送到微处理器PL3105的I/O接口,在PL3105内对这些信号做出相应的处理。

载波通信单元

载波通信采用直接序列扩频的BPSK调制解调方式:将要发送的信息用伪随机码序列扩展到较宽的频带上,在接收端用同样的伪随机码序列来进行同步接收,恢复信息。载波通信的扩频、解扩工作完全由SoC 内部的硬件电路实现,解扩阈值可以软件调节。另外,需要配合外围功率放大和接收回路等电路共同构成载波通信的硬件部分。低压电力载波通信结构框图如图2所示。载波通信采用帧同步方式的串行移位通信,半双工方式,速率500bps,中心频率为120KHz,带宽为±7.5KHz。


图2 载波通信结构框图

载波通信所需的直序扩频调制电路已在PL3105芯片内集成化,外围配置电路主要包括功率放大与滤波电路、载波耦合与接收电路,其电路如图3(a)和(b)所示。


图3(a)功率放大与滤波电路


图3(b)载波耦合与接受电路

由PL3105输出的载波信号波形为0-5V 变化的方波,包含丰富的谐波,用推挽电路进行功率放大。由于放大后的信号波形含谐波,为减少对电网的谐波污染,需要进行滤波整形。经过LC串联电路完成滤波整形后,再通过耦合线圈耦合到低压电力线上。载波发射功率的大小与电源幅值的高低、电源电流提供能力密切相关,一定范围内提高电源幅值、增大电源功率,可以有效加大发射功率、从而延长通信距离。在接收电路中,收到的强发射信号经过有效吸收衰减后,由LC并联谐振回路对信号进行带通滤波,谐振中心频率设计为120KHz,良好的选频回路可以有效提高载波接收灵敏度。

红外通信单元

PL3105 内置了红外通信模块,需要配合的外围电路由发送电路和接收电路组成。发送电路的设计采用三极管9014驱动红外发射管TASL6200,接收电路选取红外接收管TSOP1838。红外线调制频率为38KHz,通过设置有关寄存器使能红外通信后,按红外通信规约收发数据。

数据显示与存储单元

数据显示电路的设计用ZLG7289B芯片直接驱动8位共阴极数码管(LED),ZLG7289B 采用SPI 串行总线与微控制器PL3105接口,占用I/O 接口线较少。数据存储单元选用铁电非易失性数据存储器FM24C16A,存取数据速度快,保存数据时间长。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭