当前位置:首页 > 物联网 > 网络层
[导读]1. 分布式电源并网的作用分布式发电装置并网后会给配电网带来一系列积极的影响。1) 提高供电可靠性。DER 可以弥补大电网在安全稳定性上的不足。含DER 的微电网可以在大电网停电时维持全部或部分重要用户的供电,避免

1. 分布式电源并网的作用

分布式发电装置并网后会给配电网带来一系列积极的影响。

1) 提高供电可靠性。

DER 可以弥补大电网在安全稳定性上的不足。含DER 的微电网可以在大电网停电时维持全部或部分重要用户的供电,避免大面积停电带来的严重后果。

2) 提高电网的防灾害水平。

灾害期间,DER可维持部分重要负荷的供电,减少灾害损失。

3) DER 启停方便,调峰性能好,有利于平衡负荷。

4) DER 投资小、见效快。

发展DG 可以减少、延缓对大型常规发电厂与输配电系统的投资,降低投资风险。

5) 可以满足特殊场合的用电需求。

如用于大电网不易达到的偏远地区的供电;在重要集会或庆典上,DER 处于热备用状态可作为移动应急发电。

6) 减少传输损耗。

DER 就近向用电设备供电,避免输电网长距离送电的电能传输损耗。

分布式储能装置并网后,可在负荷低谷时从电网上获取电能,而在负荷高峰时向电网送电,起到对负荷削峰填谷的作用,提高电网运行效率。

其另一个重要作用,是与风能、太阳能等可再生能源发电装置配合使用,可就地补偿可再生能源发电装置功率输出的间歇性。

2. 分布式电源并网带来的技术问题

DER 的大量接入改变了传统配电网功率单向流动的状况,这给配电网带来一系列新的技术问题。

1) 电压调整问题。

配电线路中接入DER ,将引起电压分布的变化。由于配电网调度人员难以掌握DER 的投入、退出时间以及发出的有功功率与无功功率的变化,使配电线路的电压调整控制十分困难。

2) 继电保护问题。

DER 的并网会改变配电网原来故障时短路电流水平并影响电压与短路电流的分布,对继电保护系统带来影响:

(1) 引起保护拒动。

DER 对保护动作的影响如图1 所示。如果一个DER 接在线路的M处,当线路末端k 处发生短路故障时,它向故障点送出短路电流并抬高M 处的电压,因此使母线处保护R 检测到的短路电流减少,从而降低保护动作的灵敏度,严重时会引起保护拒动。

(2) 引起配电网保护误动。

在相邻线路发生短路故障时,DER 提供的反向短路电流可能使保护误动作。

(3) 影响重合闸的成功率。

在线路发生故障时,如果在主系统侧断路器跳开时DER 继续给线路供电,会影响故障电弧的熄灭,造成重合闸不成功。如果在重合闸时,DER 仍然没有解列,则会造成非同期合闸,由此引起的冲击电流使重合闸失败,并给分布式发电设备带来危害。

(4) 影响备用电源自投。

如果在主系统供电中断时,DER 继续给失去系统供电的母线供电,则由于母线电压继续存在,会影响备用电源自投装置的正确动作。

3) 对短路电流水平的影响。

直接并网的发电机都会增加配电网的短路电流水平,因此提高了对配电网断路器遮断容量的要求。

4) 对配电网供电质量的影响。

风力发电、太阳能光伏发电输出的电能具有间歇性特点,会引起电压波动。通过逆变器并网的DER ,不可避免地会向电网注入谐波电流,导致电压波形出现畸变。

3. 分布式电源并网对配电网运行管理的影响

1) DER 的接入,会增加配电网调度与运行管理的复杂性。

风力发电、太阳能光伏发电等输出的电能具有很大的随机性,而用户自备DER 一般是根据用户自身需要安排机组的投切;这一切给合理地安排配电网运行方式、确定最优网络运行结构带来困难。

2) DER 的接入,给配电网的施工与检修维护带来了影响。

由于难以对众多的DER 进行控制,停电检修计划安排的难度增加,配电网施工安全风险加大。

4. 分布式电源对配电网规划建设与经营的影响

DER 的大量应用,给配电网的规划建设与经营带来了新挑战。

1) 对配电网规划设计、负荷预测的影响。

由于大量的用户安装DER 为其提供电能,使得配电网规划人员难以准确地进行负荷预测,进而影响配电网规划的合理性。

2) 分布式发电并网的经济问题。

由于DER的接入,特别是对于自备DER 的用户,为保证其自备DER停运时仍能正常用电,供电企业需要为其提供一定的备用容量,这就增加了供电企业的设备投资与运行成本,这些费用理应有一部分由DER 业主来分担。因此,需要完善电价政策,合理地调整供电企业与DER 业主的利益。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭