当前位置:首页 > 物联网 > 感知层
[导读]自动驾驶汽车在进行规模化商用之前,必须进行充分的功能安全和性能安全测试验证,以确保消费者和公众的安全。测试内容包括传感器、算法、执行器、人机界面等,从应用功能、性能、稳定性和鲁棒性、功能安全、预期功能安全、型式认证等各个方面确保车辆能够自主上路。整个开发测试过程要经历软件在环(SiL)、硬件在环(HiL)、车辆在环(ViL)、封闭测试场测试、开放道路测试五大步骤。

 自动驾驶汽车在进行规模化商用之前,必须进行充分的功能安全和性能安全测试验证,以确保消费者和公众的安全。测试内容包括传感器、算法、执行器、人机界面等,从应用功能、性能、稳定性和鲁棒性、功能安全、预期功能安全、型式认证等各个方面确保车辆能够自主上路。整个开发测试过程要经历软件在环(SiL)、硬件在环(HiL)、车辆在环(ViL)、封闭测试场测试、开放道路测试五大步骤。

软件在环(SiL)仿真相当于将编译的生产源代码集成到数学模型仿真中,提供一个实用的虚拟仿真环境来对大型复杂系统进行详细控制策略开发和测试。SiL可以快速验证模型的策略算法和功能逻辑,能够尽早发现系统缺陷和故障,极大降低了后期故障排查的成本。

目前,市面上针对自动驾驶的仿真测试软件有很多,比如基于Unity或虚幻引擎的AirSim、CARLA Simulator,能够对车辆控制以及传感器进行仿真;基于机器人仿真软件的Gazebo、Morse,有比较好的动力模型和各种传感器的仿真;基于汽车动力学仿真软件的SCANeR、PreScan、Panosim等,能够对物理和汽车动力学模型进行仿真等。通过构建车辆和交通环境模型,测试车辆的工况、传感器、算法等。

随着显卡图像技术的进步,仿真环境越来越接近真实,但纯虚拟环境还远不能穷尽所有可能的场景,这就需要硬件在环(Hil)。Hil依靠电子控制器与真实传感器连接,有真实数据的加入,让仿真测试系统更进一步。该测试重点在于模拟外部接口信号和虚拟车辆工况的变化,能够最大化的模拟“虚拟车辆”并实时运行整车模型,并通过接口板卡连接 VCU 控制器,模拟 VCU 在不同工况下的工作环境,实现 VCU 控制算法验证和故障诊断测试。硬件在环仿真平台通常被用来验证无人驾驶车辆环境感知,路径规划以及运动控制等重要模块的算法有效性,同时也用来验证各类接口的正确性。

一般情况下,传感器供应商在出厂前也会进行测试,比如摄像头会对视野、覆盖、探测距离进行测试;雷达需要检测天线图、分辨率以及随天气变化的衰减情况;激光雷达会检测扫描层和噪音表现。而当传感器被安装到车辆上时,需要与其负责的功能一起被检验。比如要检验摄像头LKA系统的HiL项目,需要大量的、不同车道状态组合的工况下进行测试。道路测试很难遍历不同的车道组合,比如不同转弯半径的车道,难以在真实道路上都找得到,所以选择能够轻易定制测试工况的HiL变得很关键。

硬件层面上的检查之后,自动驾驶汽车还需要进行车辆在环(ViL)测试,将自动驾驶系统集成到真实车辆中,并在实验室条件下构建模拟道路、交通场景以及环境因素,从而构成完整测试平台的方法,可实现自动驾驶功能验证、预期功能安全性测试验证、各种风险场景测试、与整车相关电控系统的匹配及集成测试。

实车在环实现效果图

车辆在环测试的关键是要保证车辆运行的状态与实际道路行驶近似,通过实验室搭建一个完整的模拟交通测试环境,包括道路设施、交通车辆、行人、自然环境等。将真实车辆置身于模拟测试环境中完成不同的驾驶任务,实现多种多样的交通车辆配置及复杂的局部交通场景。

通常在虚拟环境下,可以覆盖更多案例场景的参数空间,确定临界工况,寻找危险工况点,同时获得刻画自动驾驶系统应对临界场景能力的有效模型。但是,目前交通模型与驾驶员模型的仿真精度、车辆系统模型的仿真置信度都存在技术挑战,需要进行实车测试,来比较仿真与真实测试中的行为,测试验证指定场景的系统表现,还有面对自动驾驶汽车时的行为反应模式。这就需要封闭场地测试和公共道路测试。

去年,交通运输部出台了关于《自动驾驶封闭场地建设技术指南(暂行)》的通知,对封闭场地测试有明确的标准,同时规范了自动驾驶封闭测试场地建设要求,并指导各地各单位开展自动驾驶封闭场地建设,让测试车辆在更接近国内真实交通规则和环境下行驶,除了一些必要的典型场景外,一些测试场还设有边缘场景、极端场景,更全面的检测车辆的性能。在统一的、被广泛认可的综合测试评价之后,车辆就可以慢慢驶向半开放道路和开放道路。

这就是目前自动驾驶汽车在系统测试环节的基本步骤,然而各个测试阶段是如何衔接的?如何实现虚拟测试与实车测试融合?如何规定各个阶段的测试边界?如何建立测试场景库与评价准则?如何根据设计运行范围设定场景与参数空间……一系列问题还需要进一步完善。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭