当前位置:首页 > 物联网 > 智能应用
[导读] 一般当我们提及IPv6,无非IPv6地址空间巨大,可以让地球上的每一粒沙子拥有一个IP地址,IPv6更加安全!但是今天小编要讲的,是不上IPv6,会有哪些后果和我们及时了解IPv6的必要性。

 一般当我们提及IPv6,无非IPv6地址空间巨大,可以让地球上的每一粒沙子拥有一个IP地址,IPv6更加安全!但是今天小编要讲的,是不上IPv6,会有哪些后果和我们及时了解IPv6的必要性。

势不可挡:各大运营商已经在全面铺设IPv6,包括手机、家庭宽带,比如笔者所在地福州的移动4G手机,已经获得IPv6地址。

坐以待毙:当IPv6占用率达到一定比例的时候,我相信已有的网站、新申请备案的网站,会被强制要求上IPv6,如果不配置,已有网站停止运营、申请备案不予通过。甚至,到那时,手机、家庭宽带,会仅获得IPv6地址,无法获得IPv4地址。最后,IPv4从中国互联网中废除。

通过上述2点,可以知道,作为服务端(如WEB服务提供方)是必须要上IPv6的,否则不仅无法运营、连用户也都无法访问。

IPv6基础知识

关于IPv6的教程,网络上已经有非常多写的很棒的教程了,现编没有把握能写出更好的,因此《IPv6系列》文章,将把重点放在一些概念、解决方案、很多人没注意到的坑、工作原理等等

IPv6地址长度

IPv4:32 bit

IPv6:128 bit

可以这么记忆,IPv6比IPv4多了一倍的段落,并且每个段落里增加了一倍的长度,所以IPv6比IPv4长了2×2=4倍

IPv6地址组成

IPv4:网络号+主机号/子网掩码,如192.168.1.2/24

IPv6:前缀ID+接口ID/前缀长度,如2001:0000:0000:0000:0011:0000:0000:0010/64

地址简写

IPv4:不支持

IPv6:压缩0

注意:IPv6单个段落内可重复压缩,比如上述可压缩为2001:0:0:0:11:0:0:10/64;若多个段落连续为0,可压缩,但只能压缩一次,比如上述可进一步压缩为2001::11:0:0:10/64,或者2001:0:0:0:11::10/64,通常为前者

检验方法

找一台linux服务器,比如centos7系统,执行ip addr add ${IPv6地址} dev eth0,然后ip addr show dev eth0看一下会如何压缩

IPv6地址分类

注意:表格列出的是比较常见的地址,并非全部地址

另外,除了单播、多播,IPv6相比IPv4新增了一种任播(anycast),任播是属于单播范畴内的,无法单纯从地址识别出任播

术语

节点:任何运行IPv6的设备

路由器:转发不是发给自己的IPv6报文的节点

主机:非路由器的节点

接口:节点和链路相连的物理或逻辑配件

链路:由路由器分割的网络接口集合

邻居:同一链路上的节点

链路MTU:链路能传输的最大单位,即最大的IPv6报文字节数

路径MTU:IPv6源端和目的端之间能传输的最大的IPv6报文字节数,通常是路径中所有链路的最小链路MTU

IPv6地址生成

IPv4:手工指定、dhcp分配

IPv6:手工指定、dhcp分配、自动生成

在IPv6里,主流方案就是自动生成IP,而不是手工指定或dhcp分配。当然,作为服务端是需要手工指定的,但对于更广阔的客户端来说,基本都是自动生成。这种自动生成的,叫做“无状态”,相对于“无状态”,通过dhcp获取到的固定IP,就叫做“有状态”(dhcp也支持“无状态”,这里不做详解)。

除了协议规定的特殊地址,其他可自行分配的地址,都是可以在具体范围内自动生成的,包括链路本地、全球单播、唯一本地。其中全球单播、唯一本地,是在接收到路由器发送的RA包后自动生成,具体生成的是全球单播还是唯一本地,是根据RA包内容中的前缀而定。

IPv6推动安防阶段性改革

在物联网感知层中,摄像机采集的数据信息占据世界物联网数据约一半以上的存储量。传统视频监控技术在智慧城市、公共安全等各行业已获得广泛的应用,而目前网络视频监控技术正在升级为“以视频为核心的物联信息服务”,即“视频+”“视频+多维感知”和“视频+多维应用”,视频监控网络已成为目前应用广泛、技术成熟的物联网。

IPv6在地址空间的扩充对于智慧安防在视频监控领域的设备连接上、云服务平台的管理上、以及视频数据传输安全上都起到很好的管控作用。结合5G的不断发展,在数据传输速率与频段上,也能起到良好的省时省力作用,IPv6为智慧安防带来的双效应值得引起关注。

因此,IPv6的发展与规模化推进落地,在互联网产业上将是一次新的产业革命,同样对于智慧安防领域也会是一场阶段性改革。这场局,智慧安防不仅该迅速进场,更应该趁势追击,迅速拓展应用试点加速全面落地范围。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭