当前位置:首页 > 单片机 > 单片机
[导读]中断很大程度上体现了一款单片机的性能,从这一点将MSP430在中断方面做得很不错,主要是提供了非常丰富的中断源,基本的有IO中断,定时器中断和一些接口中断(SPI,UART,I2C)等等。现在我就谈谈关于MSP430中断的一些

中断很大程度上体现了一款单片机的性能,从这一点将MSP430在中断方面做得很不错,主要是提供了非常丰富的中断源,基本的有IO中断,定时器中断和一些接口中断(SPI,UART,I2C)等等。

现在我就谈谈关于MSP430中断的一些特性,主要是在项目经历中感觉比较有用的问题,跟大家分享下。

第一,MSP430中断的优先级。

MSP430支持中断优先级,但是优先级的高低怎么获知呢?它的用手手册上有个很有意思的说法,我原文引用过来“The nearer a module is to the CPU/NMIRS, the higher the priority”,翻译过来就是说离CPU/NMIRS越近,优先级就越高。那我们怎么知道那个模块离CPU近啊,看datasheet给的框图?总觉得这不可能让一个做电子的人放心,比如框图在中距CPU一样进,那怎么区分呢?所以我们有另外一个更可靠的办法,IAR为每一款型号的430都提供了对应的头问题,只靠看中断向量地址就可以知道了。430的中断向量表从地址值0xFFC0开始至0XFFFF结束,一共有32个表项(每个中断向量对应2byte),0XFFCO对应的中断向量的优先级是最顶的,0XFFFE对应的中断向量的优先级是最高的,也就是从0xFFCO开始至0xFFFF,32个中断优先级由低至高。这样就很容易弄清楚各中断的优先级了。

第二,MSP430中断的响应过程。

首先,当然是中断发生对应的标志为置1。这个时候的过程我详述下,其实是翻译的用户手册但是还是了解下好。

1. CPU会执行完当期的指令。

2. 指向下一条指令的PC被压栈。

3. 状态寄存器SR压栈。

4. 选择最好优先级的中断进行服务。

5. 单源中断的中断标志位会被自动清零,这个地方需要小心下P1,P2这样的中断标志位不会自动清零,因为P1、P2的IO中断属于多源中断,就是说P1或者P2的8个IO对应到了一个中断向量上,单片机知道是P1或者P2发生了中断,无论是P1的哪一个IO发生的都会指向P1的中断向量,P2也是一样的,所以需要在代码中手动清零。

6. 状态寄存器SR被清零,将会终止任何低功耗状态,并且全局中断使能被关闭(GIE)。这个地方与51很是有些不同,430响应了中断后会关闭全局中断使能,不会响应任何其他的中断包括优先级高的,就是说默认状态下是没有中断嵌套的,若用到中断嵌套的话需要使用_EINT()打开全局中断。

7. 中断向量被装载到PC,开始执行中断服务函数

以上是整个中断的接收过程,比较重要的地方我用彩色字体标出了。

中断返回就相对简单些,中断服务函数会由RETI这条指令返回,SR被弹出,单片机恢复到中断前的状态,PC也被弹出,继续执行指令。

第三,开中断和中断服务函数。

这个是让我在项目中纠结过的地方,也请各位小心。

MSP430一旦开了外设的中断,比如SPI的接收中断。

在SPI的接收中断被使能,单片机一旦发现SPI接收标志置位,就会装载中断向量,但是我们如果没有用到SPI的接收中断,会怎样呢?由于没用到,所有就没有写SPI接收中断的服务函数,此时中断向量里指向中断服务函数地址值是啥?是全0。CPU从0-01FFh取指令,只会发生一件事。PUC,上电清零。接着PC会装载0xFFFE中断向量的内容,也就是复位向量,程序会跳转到给IAR我们做的启动代码。程序再往下执行会执行到我们编写的代码的main()的第一句。这样悲剧就诞生了,荡机了!!!!

所以我在这希望初学430的朋友对于中断,未使用的就不要使能。使能的就一定要写中断服务函数,哪怕是空函数!

以上是我在430中断使用中的一些经验,希望对各位有用!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭