当前位置:首页 > 电源 > 线性电源
[导读]在系统中成功运用低压差稳压器,低压差稳压器(LDO)能够在很宽的负载电流和输入电压范围内保持规定的输出电压,而且输入和输出电压之差低压差稳压器(LDO)能够在很宽的负载电流和输入电压范围内保持规定的输出电压,

在系统中成功运用低压差稳压器,低压差稳压器(LDO)能够在很宽的负载电流和输入电压范围内保持规定的输出电压,而且输入和输出电压之差低压差稳压器(LDO)能够在很宽的负载电流和输入电压范围内保持规定的输出电压,而且输入和输出电压之差可以很小。这个电压差被称为压降或裕量要求,在负载电流为2A时可以低至80mV。可调输出低压差稳压器于1977年首次推出。现在,便携设备需要使用的低压差线性稳压器经常多达20个。最新便携设备中的许多LDO被集成进了多功能电源管理芯片(PMIC)——这是高度集成的系统,拥有20个或以上的电源域,分别用于音频、电池充电、设备管理、照明、通信和其它功能。

然而,随着便携系统的快速发展,集成式PMIC已经无法满足外设电源要求。在系统开发的后期阶段必须增加专用LDO来给各种选件供电,如相机模块、蓝牙、WiFi和其它连接模块。LDO还能用来辅助降低噪声,解决由电磁干扰(EMI)和印刷电路板(PCB)布线造成的稳压问题,并通过关闭不需要的功能来提高系统效率。

本文将讨论基本的LDO拓扑,解释关键的性能指标,并展示低压差稳压器在系统中的应用。同时使用ADI公司LDO产品系列的设计特征进行示例说明。

图1:采用低压差 (Vout和在额定负载电流时Vin的最低给定值之间的差值) 技术稳定输出电压的LDO框图。

基本的LDO架构。LDO由参考电压、误差放大器、反馈分压器和传输晶体管组成,如图1所示。输出电流通过传输器件提供。传输器件的栅极电压由误差放大器控制——误差放大器将参考电压和反馈电压进行比较,然后放大两者的差值以便减小误差电压。如果反馈电压低于参考电压,传输晶体管的栅极电压将被拉低,允许更多的电流通过,进而提高输出电压。如果反馈电压高于参考电压,传输晶体管的栅极电压将被拉高,进而限制电流流动、降低输出电压。

这种闭环系统的动态特性基于两个主要的极点,一个是由误差放大器/传输晶体管组成的内部极点,另一个是由放大器的输出阻抗和输出电容的等效串联电阻(ESR)组成的外部极点。输出电容及其ESR将影响环路稳定性和对负载电流瞬态变化的响应性能。为了确保稳定性,推荐1Ω或以下的ESR值。另外,LDO要求使用输入和输出电容来滤除噪声和控制负载瞬态变化。电容值越大,LDO的瞬态响应性能越好,但会延长启动时间。ADI公司的LDO在使用规定电容时可以在规定工作条件下达到很好的稳定性能。

LDO效率:提高效率一直是设计工程师的永恒追求,而提高效率的途径是降低静态电流(Iq)和前向压降。

由于Iq在分母上,因此很明显Iq越高效率就越低。如今的LDO具有相当低的Iq。当Iq远小于ILOAD时,在效率计算公式中可以忽略Iq。这样,LDO的效率公式可以简化为(Vo/Vin)*100%。由于LDO无法存储大量的未使用能量,没有提供给负载的功率将在LDO中以热量形式消耗掉。


LDO可以提供稳定的电源电压,这种电压与负载和线路变化、环境温度变化和时间流逝无关,并且当电源电压和负载电压之间的压差很小时具有最高的效率。例如,随着锂离子电池从4.2V(满充状态)下降到3.0V(放电后状态),与该电池连接的2.8V LDO将在负载处保持恒定的2.8V(压差小于200mV),但效率将从电池满充时的67%增加到电池放电后的93%。

为了提高效率,LDO可以连接到由高效率开关稳压器产生的中间电压轨,例如使用3.3V开关稳压器。LDO效率固定为85%,假设开关稳压器效率为95%,那么系统总效率将是81%。

电路特性增强LDO性能: 使能输入端允许通过外部电路控制LDO的启动和关闭,并允许在多电压轨系统中按正确的顺序加电。软启动可以在上电期间限制浪涌电流和控制输出电压上升时间。睡眠状态能使漏电流最小,这个特性在电池供电系统中特别有用,并且允许快速启动。当LDO的温度超过规定值时,热关断电路将关闭LDO。过流保护电路可以限制LDO的输出电流和功耗。欠压闭锁电路可以在供电电压低于规定的最小值时禁止输出。图2是用于便携设计的典型电源系统简图。

图2:便携系统中的典型电源域。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭