当前位置:首页 > 电源 > 线性电源
[导读]介绍许多工业应用, 半导体晶圆检测测系统, 有机发光二极管平板显示器生产和检测,,这些应用要求极其高的运动性能,在低速匀速运动的纳米级运动中保持亚纳米级的静止抖动和跟

介绍

许多工业应用, 半导体晶圆检测测系统, 有机发光二极管平板显示器生产和检测,,这些应用要求极其高的运动性能,在低速匀速运动的纳米级运动中保持亚纳米级的静止抖动和跟随误差。目前线性伺服驱动已经被应用于满足这些需求。这种类型的驱动器提供了惊人的性能,可以达到这些应用需要的线性度。但是由于线性伺服驱动器效率低,热损耗大,体积大、笨重。新一代450mm半导体比目前的300mm半导体大得多,而且这样的系统需要驱动器具有更高的能力,更高的电压和电流。这就要求线性驱动器体积非常大,而且能量很有限,因此限制了这个系统的性能和生产量,增加了系统成本,降低了系统可靠性。

NanoPWM是开关PWM驱动器的线性化,这种线性化基于一种独特的专利技术。

在过去5年中ACS研发的PWMBoost可以满足这样的位置系统。NanoPWM驱动器提供更好的位置性能和跟随性能,并且克服了线性驱动器的缺点。NanoPWM非常紧凑,有更高的效率和可靠性,可以提供更高的能量,电流和电源,而且更经济。

伺服驱动器的种类

两种主要的伺服驱动器:线性驱动器和开关PWM驱动器。

图1描绘了线性驱动器的原理框图。这个驱动器像一个可变电阻一样工作,根据电流需求和负载阻抗调节电流。供电电压被分配在马达和驱动器之前。当马达以低速运行被要求提供大力矩时,电流就是高的,加在马达上的电压就是低的,加在驱动器上的电压就是高的。此时驱动器的损耗是很高的。

 

 

图1线性驱动器的原理图描述

图2描述了开关PWM驱动的原理图框图。驱动器作为通断开关工作。马达作为平均电流的综合集成。平均电流是开关占空比的线性函数。任意给定时刻开关或者是断开的(没有电流流过开关)或者是导通的(有低电压加在开关上)。因此开关损耗是很低的。

 

 

图2—PWM驱动器的原理图描述

.

表1.各种类型驱动器的优缺点总结

表1—各种驱动器的优缺点

 

需求

 

 

表3-半导体晶圆蓝图

半导体晶圆检测系统要求亚纳米级的静止误差和纳米级跟随误差。今天,大多数系统是为了处理直径300mm 的晶圆。下一代晶圆的直径将达到450mm。这要求有同样或者更好的位置控制性能,由于尺寸和重量更大,我们需要更大的马达和驱动器来保持和提高系统的吞吐量。这样的系统要求驱动器具有线性驱动器和PWM驱动的优点。NanoPWMTM就是这样的驱动器。它很高效,可以实现高电压操作,提供高电流。它很紧凑而且成本更低。

图4和5介绍了NaonPWM的主要特点。

 

 

lowEM noise :低电磁噪声

good performance:良好的性能

High efficiency:高效率

Compact size:结构紧凑

Very reliable:非常可靠

Affordable price:可接受的价位

Regular performance:一般性能

High EM noise :高电磁噪声

Complex design:设计复杂

Poor reliability :可靠性较差

Low efficiency:效率低

Expensive:造价高

图4-NanoPWM兼容了线性驱动器和PWM驱动器的优点

 

 

图5-相同功率的线性驱动器和PWM驱动器的尺寸对比

性能比较

测试系统包括一个无贴心直线马达带动的直线平台,交叉滚珠轴承机械和基本分辨率为0.4mico-meter的magnascale激光模拟量SIN-COS编码器。运动控制系统包括ACS MC4U控制模块和三种不同的驱动器

• NanoPWM

• Standard PWM标准PWM驱动器

• Standalone linear drive单独线性驱动器

在每个测试中,驱动器和算法都进行一定的调试使其达到最优性能和相似的带宽。

入表2中描述,驱动器具有相同的特性[!--empirenews.page--]

 

 

Table 2 – 驱动器的主要性能指标

测试以下性能指标:

静止抖动

低速跟随误差

 

静止误差—NanoPWMvs线性驱动器

测试结果在表6中,总结在表格3中

 

 

表6 –NanoPWM(红色)VS线性驱动器(黄色)静止抖动

 

 

Table 3 - NanoPWM (红色) VS 线性驱动器 (黄色) 静止抖动

使用NanoPWM驱动器比使用线性驱动器时的静止抖动明显减小(小4.5倍:0.8nmVr3.6nm)

低速跟随误差-NanoPWM VS线性驱动器.

跟随误差是在1mm/s的速度下测量的,测试结果在表图7中,总结在表格4中

 

 

图7 NanoPWM驱动器(红色)VS线性驱动器(黄色)的跟随误差

NanoPWM 线性驱动器

 

 

Table 4 - NanoPWM (红) VS线性驱动器 (黄) 跟随误差

使用NanoPWM驱动器时跟随误差明显减小,结果得到跟平滑的运动轨迹,这样的轨迹在晶圆检测过程中十分重要。

静止误差-NanoPWM VS标准PWM驱动器

测试结果见图8,表5进行了总结

 

 

图8-NanoPWM(红色)vs PWM(黄色)静止抖动

 

 

Table 5 - NanoPWM (红色) VS PWM drive (黄色) 静止抖动

使用NanoPWM驱动器的静止误差比使用标准PWM驱动器小两个数量级。平板显示器加工系统比较庞大,对于马达电压和电流的要求超过了目前商业化了的线性马达的容许能力。有机LED显示要求更高的精确度,跟随精度和静止抖动,都要在几个纳米的误差范围内。NanoPWM给这样的需求提出了解决方案。

总结

本文介绍了一直新型的线性开关伺服驱动器-NanoPWM,这种驱动器具有线性驱动器和PWM驱动器的所有优点。使用NanoPWM驱动器得到的运动性能超过了目前已经商业化了的线性伺服驱动器的性能。这种驱动器更小,更可靠,更便宜。

这种驱动器可以满足更高的运动性能需求,适合半导体晶圆检测和平板显示器制造系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度

[日本川崎2024年5月14日]——东芝电子元件及存储装置株式会社(东芝)成功实现存储容量超过30TB[1] 的硬盘,其中采用两项新一代大容量硬盘驱动器(HDDs)记录技术:热辅助磁记录 (HAMR;Heat Assis...

关键字: 存储硬盘 驱动器

目标应用包括电动天窗、电动车窗升降机、电动滑门和电动尾门

关键字: 驱动器 电动天窗 电动滑门

驱动器电阻是一种用于驱动电机的元件,一般安装在电机输出端口和驱动器之间。驱动器电阻的作用主要是调节电机的驱动电流。

关键字: 驱动电阻 驱动器 输出功率

全球领先的供应品类丰富、发货快速的现货技术元器件和自动化产品商业分销商DigiKey,日前宣布与半导体技术领域的高性能产品开发商3PEAK 建立战略全球分销合作伙伴关系,进一步扩大了其产品组合。

关键字: 半导体 驱动器 DC-DC 转换器

开关电源LLC是一种高效的电源转换技术,被广泛应用于各种电子设备中。它结合了谐振电路和PWM(脉宽调制)控制的优点,实现了高效率和低电磁干扰的性能。本文将详细阐述开关电源LLC的原理,包括其工作原理、控制策略以及应用优势...

关键字: 开关电源 LLC PWM

在数字化时代的浪潮中,驱动器作为计算机硬件与软件沟通的桥梁,其作用不容小觑。无论是打印机、扫描仪还是其他外部设备,正确的驱动器安装是确保这些设备正常工作的前提。本文将通过一系列逻辑严密的步骤和生动的比喻,引导读者了解并掌...

关键字: 驱动器 打印机

在自动化控制领域,驱动器扮演着至关重要的角色。它作为连接控制器与机械执行元件之间的桥梁,将电信号转换为机械动作,从而驱动设备运行。因此,正确进行驱动器接线是确保系统稳定、高效运行的前提。本文旨在详细阐述驱动器接线的标准流...

关键字: 驱动器 计算机硬件

在现代科技生活中,驱动器扮演着至关重要的角色。无论是电脑硬盘、打印机还是智能手机,驱动器的正常运作都是设备功能正常发挥的前提。然而,就像最精密的机械也会磨损一样,驱动器也不可避免地会出现故障。当面对驱动器故障时,了解其原...

关键字: 驱动器 驱动器故障

Holtek新推出具有LED调光功能OTP MCU HT45R5530,采用PSR Flyback电源设计架构,有源功率因子校正控制技术可以满足高功率因子>0.9、低谐波失真和高效率的性能要求。支持前沿相位角侦测,以及主...

关键字: MCU LED 驱动器
关闭
关闭