当前位置:首页 > 电源 > 线性电源
[导读]目前,无线通信设备正朝着低电压、低功耗、低噪声和高线性度的趋势发展。混频器作为收发机中的关键模块之一,对通信设备的上述性能产生直接的影响。随着微电子工艺的发展,

目前,无线通信设备正朝着低电压、低功耗、低噪声和高线性度的趋势发展。混频器作为收发机中的关键模块之一,对通信设备的上述性能产生直接的影响。随着微电子工艺的发展, CMOS器件的栅长进一步缩小,MOS器件的过驱动电压也进一步降低,这就为设计低压低功耗的射频电路提供了可能,但是依靠减小MOS器件的栅长降低工作电压是有限的。因此,电路设计者把更多的注意力集中到电路拓扑结构上,使设计具有低压结构的射频电路成为了热门课题。

传统的Gilbert混频器由跨导级、开关级、负载级堆叠组成,其结构自下而上分别为跨导级、开关级、负载级。这种结构中,所有的直流电流都流经跨导级、开关级和负载级,跨导级与开关级电路都需要一个开启电压(VON ) ,负载级也会有一定的电压降(VRL ) , 因此, 电源电压的最小值Vdd,min = 2Von +VRL。如果采用低电源电压,这种结构不能保证所有的管子都工作在饱和区。也就是说, Gilbert混频器不能满足低电压的要求, 需要对其做出改进, 如:文献[2 - 3 ]提出省去尾电流管来减小电源电压,文献[ 4 - 11 ]用折叠结构代替堆叠结构来解决上述问题。

文献[ 8 ]给出了折叠结构和堆叠结构的比较,折叠结构增加了两个射频中断电路和一个耦合电容。这样对直流通道来说,跨导级与开关级、负载级的直流电路分开,两条支路相互独立,互不影响。电源电压只需提供相当于一个开启电压(Von )的值就能使跨导管与开关管都工作在各自的饱和区, 即电源电压的最小值Vdd,min = Von + VRL 。达到了低电源电压的目的。但是, 射频中断电路一般用LC 谐振网络实现,电感的使用增加了电路的版图面积和噪声。本文设计了一种新的折叠结构混频器,电路不使用具有大电感的LC谐振电路,工作于1. 2 V 电压时,得到了低电压、低功耗、低噪声和高线性度的性能。

1 电路设计与分析1. 1 电路拓扑结构

本文设计的折叠混频器拓扑结构如图1所示,M1 ~M4 为跨导级,M5 ~M8 为开关级, RL 为负载电阻。RF输入端接匹配网络, IF输出端接源跟随器作为输出缓冲电路( buffer) 。

图1 交流耦合折叠混频器拓扑结构

该折叠混频器电路的跨导级采用电流复用技术,由NMOS管(M1、M2 ) 、PMOS管(M3、M4 )和隔直电容Cd 组成交流耦合互补跨导结构。跨导级的输出端(A、A′点)与开关管的源极相连。跨导级直接接于电源电压,使得跨导管M1 和M2 的直流电流由两部分组成,一部分来自M3 和M4 ,另一部分来自开关管和负载电阻,达到了低电源电压的目的。

由于流经开关级与负载级的电流很小,这样一方面使得开关管产生的闪烁噪声减小,另一方面负载电阻RL 值可以适当加大,从而提高了混频器的转换增益。所以该电路既满足了低电压的要求,又能保证混频器在低电源电压下有良好的性能。

1. 2 跨导电路设计

图2是几种折叠混频器跨导电路。图2 ( a)在跨导级NMOS管M1 漏端接负载电阻R ,M1 管的电流In 在A 点分流, 一部分流经开关管( Is ) ,另一部分流经负载电阻( Ir ) ,但是这种跨导电路的缺点是射频信号一部分通过负载电阻R 泄露到交流地。

为了减少射频信号的损失,必须增加电阻R,这样又会使节点A 的直流电压减小,在低电源电压下,不能保证M1 管工作在饱和区。为了解决这个问题,用有源负载替代负载电阻R ,如图2 ( b) 。但是,这里的PMOS管仅仅增大了节点A与电源电压之间的阻抗,如果把M1 和M2 的栅极连起来,形成CMOS反相器结构,那么M2 在增加阻抗的同时还能跟M1共同放大射频信号 ,如图2 ( c) ,这样就完全避免了射频信号通过M2 泄露到交流地。由图可知, Is =In + Ip ,总跨导gm = gm n + gm p ( gm n是NMOS管的跨导, gm p是PMOS管的跨导) ,所以CMOS反相器有效地提高了混频器的转换增益。

图2 折叠混频器的跨导级几种结构

再来分析一下该结构的直流工作状况,M1 和M2 的栅极加相同偏置电压Vrfdc ,假设Vt 为MOS管的阈值电压, Vovn为M1 的过驱动电压, Vovp为M2 的过驱动电压,则有: Vovn =Vrfdc - Vt , Vovp =Vdd - Vrfdc -Vt ,所以电源电压最小值Vdd,min = Vovn + Vovp + 2Vt。


在0. 18μm CMOS工艺中, Vt 典型值为500 mV,因此用反相器作为跨导电路的混频器只适用于1 V以上的电源电压。为了使混频器能满足更低的电压,在M1 和M2 之间增加隔直电容Cd ,M1 和M2 管偏置分开,如图2 ( d) 。这种结构称为交流耦合互补跨导。假设Vrfdcn为M1 的偏置电压, Vrfdcp为M2 的偏置电压,则电源电压的最小值Vdd,min = Vovn + Vovp + 2Vt+Vrfdcp - Vrfdcn ,可见,在Vrfdcn >Vrfdcp时, Vdd,min比常规反相器更小,适用于更低的工作电压。

1. 3 性能分析

1. 3. 1 增益

假设本振信号LO为理想方波信号, 则该混频器(如图1)的增益可表示为:

gm n是M1 和M2 的跨导, gm p是M3 和M4 的跨导, R 即负载电阻RL 的值。因为开关管的漏极电流很小,所以负载电阻值可以适当增加,由式( 1)知,混频器的增益将随之提高。值得注意的是, 增大负载电阻值的同时必须保证节点A 的直流电压足够使得M1 和M2 工作在饱和区。

1. 3. 2 噪声系数

假设本振信号为理想方波信号,并考虑镜像频率的影响,噪声系数的表达式为:

RS 为源阻抗, RL 为负载电阻值, 系数γn 对长沟道晶体管来说等于2 /3,对于亚微米MOSFET,γn 的值较大。由式(2)知,只要选择合理的偏置电压Vrfdcn、Vrfdcp和M1~M4的宽长比, 噪声系数随着跨导的增加而减小。

1. 3. 3 线性度

如果节点A (见图1)的电压过高,开关管将会关断。也就是说,如果M1 和M3 的电流很大,M1 和M2的输出端电压也增大,这样就会关断开关管M7 和M6或者M5 和M8。开关管进入线性区,影响混频器的线性度,所以降低节点A 的电压,并让开关管远离线性区 ,即Vgs≈Vth ,能提高混频器的线性度。

2 电路仿真

该混频器设计基于SM IC 0. 18 μm标准CMOS工艺,用Advanced Design SySTem软件进行电路设计与仿真。电源电压1. 2 V; RF频率为2. 5 GHz,功率为- 30 dbm; LO频率为2. 6 GHz,本振信号的电压摆幅VLO = 600 m Vpp。

图3是三阶交调点( IIP3)随本振功率变化曲线,在本振功率为0 dBm时, IIP3达到最大值3. 857dBm。当本振功率大于或小于0 dBm时, IIP3都会急剧下降。图4是噪声系数(NF)和转换增益(Con2version Gain)随本振功率变化曲线,本振功率为- 3dBm时,噪声系数达最小值4. 982 dB,本振功率为- 5 dBm时,转换增益达到最大值11. 23 dB。考虑到混频器的整体性能,必须采取折衷,所以选择本振功率为0 dBm,此时,噪声系数为5. 257 dB,转换增益为9. 787 dB。图5是当本振功率为0 dBm时,噪声系数随输出频率变化曲线,噪声系数随着输出频率的增加不断减小,在输出频率为100 MHz时,噪声系数为5. 257 dB。

图3 IIP3随本振功率变化曲线。

图4 NF与转换增益随本振功率变化曲线。

图5 NF随输出频率变化曲线。

图6是该折叠混频器的版图,该版图用CadenceVirtuoso Layout editor进行设计及优化。RF输入端的匹配网络与IF输出端的buffer都集成在了片内,版图面积556μm &TImes;966μm。

图6 折叠混频器版图。

表1是本文设计的折叠混频器整体性能的仿真结果,并与其他发表的论文做了比较,可以看出该混频器具有高线性度,低噪声的优点。

表1 混频器性能总结与比较

3 总结

本文采用交流耦合互补跨导级成功设计了一种适用于低电源电压下工作的折叠混频器。仿真结果表明,该混频器具有高线性度、低噪声的优点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭