当前位置:首页 > 显示光电 > 电源-LED驱动
[导读]在能源危机和气候变暖问题越来越严重的今天,节能与环保已成为社会焦点议题。LED因其高效、节能、环保、寿命长、色彩丰富、体积小、耐闪烁、可靠性高、调控方便等诸多优点等

在能源危机和气候变暖问题越来越严重的今天,节能与环保已成为社会焦点议题。LED因其高效、节能、环保、寿命长、色彩丰富、体积小、耐闪烁、可靠性高、调控方便等诸多优点等特点受到人们的广泛关注,被认为是21世纪最有前途的照明光源。传统的白炽灯效率低、耗电高;荧光灯省电,但使用寿命短、易碎,废弃物存在汞污染;高强度气体放电灯存在效率低、耗电高、寿命短、电磁辐射危害等缺点;若能以LED照明取代目前的低效率、高耗能的传统照明,无疑能缓解当前越来越紧迫的能源短缺和环境恶化问题。由于LED自身的伏安特性及温度特性,使得LED对电流的敏感度要高于对电压的敏感度,故不能由传统的电源直接给LED供电。因此,要用LED作照明光源首先就要解决电源驱动的问题。传统的LED驱动电源虽然可以实现LED亮度调节,但是不能实现功率因数校正,输入功率因数比较低,谐波比较大。为了使LED驱动电源的输入电流谐波满足要求,必须加功率因数校正。本文介绍一种单级PFC反激式LED电源,该电源所用器件少,损耗低,具有较高的的功率因数和效率。

1 电路原理分析

图1为电路简图。电路采取单级反激式拓扑,由全波整流,DC/DC变换,输出整流滤波电路,误差反馈电路,PWM控制器电路构成。

 

 

FAN7527B是飞兆半导体公司推出的有源功率因数校正控制芯片。该芯片内部乘法器电路的优异性能,可以用于宽交流市电输入电压范围的应用场合(85~265VAC)。并使所构成电路的THD值很小,从而获得良好的有源功率因数校正控制功能。它的启动工作电流只有几十微安,利用它的零电流检测FAN7527B的5脚可以实现电路的关断控制功能。

电路的输入电容的容量很小(即交流输入市电整流输出滤波电容容量很小),因此APFC电路的输入电压最大值很接近于交流输入市电电压整流后输出电压的峰值。该电路的主要优点是它的高功率因数(一般大于0.92),可以很好地满足有关EMC和THD的技术要求,特别是在宽交流市电输入电压范围的应用场合更是如此。在输出重负载的应用场合,该电路可以得到较高的工作效率,一般工作效率接近90%,工作于电流临界导通工作模式可以使APFC功率开关管MOSFET的导通损耗比较小,有利于减少散热器的体积。

图中C1上的电压为经过桥式整流后的电压,Rs1采样流过MOS管的电流,进行逐周期限电流控制,使MOS管的电流峰值不至于太大,确保负载短路时变压器不发生磁饱和。利用辅助绕组完成变压器一次绕组的电流过零检测(APFC变压器去磁),控制功率开关管Q2重新开始下一个开关导通工作周期的工作,FAN7527B的Idet引脚外接的电阻R4阻值在几十千欧的范围内,使电路工作于“准零电压导通”的工作方式。R4电阻值取值和变压器的一次绕组的电感量和功率开关管MOSFET的输出电容有关,具体电阻值可以通过实验来确定,本电路中取值为33K。Rs2采样负载LED电流信号,R7、R8构成分压网络对LED上的电压进行采样。Rs2采样LED上的电流与TM101上的基准信号CVin进行比较,经误差经放大器对输出进行恒流控制,LED的亮度和流过LED的电流大小基本成正比的,只要控制流过LED的电流大小就可以调节LED的亮度。R7、R8采样LED上的电压与TM101上的基准信号CVin进行比较,经误差放大器对输出电压控制,送入TM101的这两路信号相“与”后通过光耦送入控制芯片FAN75 27B的误差放大器进入乘法器。乘法器另一路是通过R13、R19、R23和R27采样经全波整流后的市电信号,这两路信号的乘积就是乘法器输出,该输出信号使得电感电流跟踪乘法器的输出波形信号,产生的PWM脉冲控制MOS管Q1的开关,实现对负载电流和输入电流的控制,完成LED实现对LED的恒流限压控制和输入功率因数的校正。

2 变压器参数计算

变压器是电源的核心器件之一,变压器性能的好坏不仅影响变压器自身发热和效率,而且还会影响到开关电源的技术性能和可靠性,所以在设计制作时,对磁芯材料的选择,磁芯与线圈的结构,绕制工艺等都要周密考虑。

设计参数:①fs=80-120kHz,Bs=0.2T,D=0.45;②AP=Ae×Aw=1.82cm4;③输入输出电压:Vin=176~264VAC;Vout=176~264VAC;=36V;④输出电流:Io=3.8A,⑥电路形式:反激式,变压器选用PC40 PQ32/25磁芯。

(1)变压器的参数计算

变压器的设计输出能力

 

 

其中,电流密度δ=300A/cm2,输出功率PT=136W,窗口占空系数Kw=0.4。

变压器的实际输出能力AP=Ae×Aw=0.55cm4,磁芯满足设计要求。

(2)计算初、次级的峰值电流

 

 

(3)计算初级电感量及气隙长度

初级电感量

 

 

气隙长度(mm)

 

 

其中△B为磁通密度的变化量,△B=0.805BS+125GS=1730GS-0.173T,其中单位为mT。

[!--empirenews.page--]

(4)计算变压器绕组的匝数

a初级与次级匝数的变化

 

 

b初级绕组匝数:初级绕组的匝数

 

 

得到的匝数为21匝。

c次级绕组的匝数

输出电压均为36V,则得次级输出匝数N22=N21=N1/n=75/12.5=6,则取6匝。

3 试验结果

根据上述分析,制作输出功率120W样机进行试验,样机的输入电压:AC 220V,输出电流恒流3.5A。电路主要参数:误差放大器补偿参数:C4=1μF,R5=63K,R11=47K;输出电容C6=3300μF,功率管选用飞兆半导体的17N80C3。

图2是输入220V,输出满载120W时测得的输入电流波形,可以看出输入电流接近标准的正弦波,实测功率因数达0.977。

图3所示为输入220V,输出满载时的输出电流波形。纹波电流峰峰值120mA,输出电流中叠加有2倍市电供电频率的纹波电流。

 

 

4 结束语

本文介绍了以FAN7527B为核心的单级反激式功率因数校正LED驱动电源,与相同功率等级的LED驱动电源相比较,主要优点是它的高功率因数(一般大于0.95),可以很好地满足有关电磁兼容和电流谐波分量的技术要求,特别是在宽交流市电输入电压范围的应用场合更是如此。该电源在输出重负载的应用场合,电路具有较高效率(大于0.88),发热量小的特点,减小了对LED灯头的损害。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电力电子设备中,低电压启动能力是衡量系统可靠性的核心指标之一。尤其在电网波动频繁的工业场景或偏远地区,电源设备需在85VAC至265VAC的宽输入范围内稳定启动。这一需求对输入电容容量设计、功率因数校正(PFC)控制策...

关键字: PFC 低电压

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

中国上海,2025年7月22日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出新的参考设计“REF67004”,该设计可通过单个微控制器控制被广泛应用于消费电子电源和工业设备电源中的两种转换器——电流...

关键字: 电源 PFC 转换器

在现代电子设备中,开关电源因其高效、紧凑等优点而得到广泛应用。其中,反激式开关电源以其简单的拓扑结构和较低的成本,在中小功率应用场景中占据了重要地位,如手机充电器、LED 驱动电源等。然而,反激式开关电源输出电压中存在的...

关键字: 纹波 反激式 输出电压

现代数据中心功率需求激增,48V母线架构逐渐取代传统12V系统,高功率密度、高效率和可靠保护成为行业核心挑战。德州仪器全新电源管理芯片TPS1685和氮化镓(GaN)器件LMG3650,为AI数据中心提供智能、可靠的电源...

关键字: TI TPS1685 LMG3650 PFC LLC 48V

PFC就是功率因数校正的意思,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。

关键字: PFC 开关电源

在现代电力系统中,功率因数校正(Power Factor Correction, PFC)技术扮演着至关重要的角色。它不仅有助于提高电网的稳定性,减少能源浪费,还能降低运行成本。高功率因数(PF)意味着电力设备的输入电流...

关键字: Boost 扑结构 PFC

LED(发光二极管)作为新一代照明技术,以其高效、节能、环保等特点,正逐步取代传统照明设备。然而,LED的驱动电源设计却是一项复杂且关键的任务,特别是要确保高效率以满足现代照明系统的严格要求。选择合适的拓扑结构和控制策略...

关键字: LED驱动电源 拓扑结构

在反激式开关电源的研究与应用中,一个值得关注的现象是其辅助绕组电压会随着次级输出功率的增加而上升。深入理解这一现象背后的原理,对于优化反激式开关电源的设计、提升其性能以及保障其稳定运行都有着重要意义。

关键字: 反激式 开关电源 辅助绕组

本文深入探讨了反激式开关电源中次级整流二极管过热的问题。首先介绍了反激式开关电源的工作原理以及次级整流二极管在其中的作用,详细分析了导致二极管过热的多种因素,包括二极管选型不当、电流过大、散热不良、反向恢复特性不佳以及电...

关键字: 反激式 开关电源 整流二极管
关闭