当前位置:首页 > 技术学院 > 技术前线
[导读]相信很少有朋友关心PFC功率矫正电路中电感之后的那个二极管,但是从事电路设计多年的高手一定能够看出此二极管的作用。实际上,此二极管的作用在电路中非常重要,其能够在一定程度上避免电感自感产生反向电流,对电路造成破坏。

本文深入探讨了升压PFC电感上的二极管在电源设计中的真正作用。通过重新解析有关二极管D2的观点与解释,我们明确了其在保护开关管、减少浪涌电压以及维护系统稳定等方面的关键作用。此外,文章通过理论分析和实践经验为这一争议提供了新的解决方案。

相信很少有朋友关心PFC功率矫正电路中电感之后的那个二极管,但是从事电路设计多年的高手一定能够看出此二极管的作用。实际上,此二极管的作用在电路中非常重要,其能够在一定程度上避免电感自感产生反向电流,对电路造成破坏。

此二极管的作用是开机时对电容进行充电,而不是经过电感。因为开机时充电电流大,无此二极管会造成电感饱和,如果这时PFC启动的话必将炸机,电源运行后后级电压高于前级,二极管失去作用。

AC上电时,如果角度在90度,输入电压瞬间有220*1.414=310v,沿路电感走线阻抗很低,小余1ohm,热敏电阻阻抗视温度而定,如果25c时4ohm,80c时一般根本达不到0.4ohm。

假设机器运行了一段时间,热敏电阻达到80度,这种温度并不夸张,在实际运行中是常见的。并且遭遇突然停电又在1分钟内恢复电力的情况,来电的角度达到了90度,那么50hz pk冲击电流就有310/1.5ohm=200a。持续时间可能4ms。

此外,这个二极管还有着正向导通的功能,反向电流是通不过的。其主要作用是稳定电流,防止电感自感产生反向电流,对电路产生影响,或对器件有破坏。

在电源设计中,升压PFC电路是实现功率因数校正和减少电磁干扰的关键部分。然而,对于其中的一个元件——升压PFC电感上的二极管D2的作用,在业界存在着众多不同的观点和解释。本文将深入探讨并重新解析这个问题,以揭示二极管D2的真正作用。

1. 二极管D2的保护功能

该二极管被广泛认为是为了保护升压二极管D1和PFC开关管而设置的。当电源开机瞬间或负载短路等异常情况发生时,二极管D2提供了一个充电路径,防止PFC电感饱和对开关管造成的危害。此外,二极管D2还能减轻PFC电感和升压二极管的负担,从而起到保护作用。

2. 减少浪涌电压的冲击

有些观点认为,二极管D2的作用是减少浪涌电压对滤波电容的冲击。然而,这种解释有一定的争议。在实际情况中,PFC电感L的电流不能突变,因此不会出现某些观点所提到的“电源开机瞬间电感L产生极大自感电势的现象”。事实上,由于PFC电感本身对大滤波电容C的浪涌电流起到限制作用,这种现象并不会发生。

3. 对升压二极管的分流保护

另一个广泛提及的观点是,二极管D2能够分流一部分PFC电感和升压二极管支路的电流,从而保护升压二极管。然而,在实践中,由于并联二极管D2取消了PFC电感L的限制作用,反而会增加对滤波电容的冲击。因此,这种观点在实际中并不成立。

4. 新的解决方案:保护开关管与稳定系统

基于以上分析,我们提出了一个新的解决方案,以更准确地解释升压PFC电感上的二极管D2的作用。首先,D2的存在是为了在电源开机瞬间防止PFC电感饱和对开关管造成过流的风险。其次,二极管D2的引入可以确保系统中各部分电压及时建立并稳定,从而保持PFC电路的工作正常。最后,D2对升压二极管的分流保护作用相对较小。

5. 保护开关管的重要性

对于升压PFC电路中的开关管来说,保护是至关重要的。在开机瞬间或负载突变的情况下,PFC电感L上的电流可能会快速增加,导致开关管承受过大的电流压力,甚至引发故障。而二极管D2的作用就在于提供一个可靠的充电路径,使得电感L上的电流能够得到良好的限制和调节,从而保护开关管不受损害。

6. 抑制浪涌电压对系统的影响

除了保护开关管外,二极管D2还可以减少浪涌电压对整个系统的不良影响。在电源开关接通瞬间,由于输入电容需要快速充电,通过PFC电感L的电流会相对较大。若没有二极管D2的存在,这种情况下PFC电感可能会饱和,导致开关管工作异常,甚至损坏其他元件。然而,二极管D2的引入能够提供额外的充电路径,迅速建立滤波电容上的电压,使PFC电路能够正常工作,同时减少对整个系统的浪涌电压冲击。

揭示二极管D2的重要作用

通过以上分析,我们可以得出结论:升压PFC电感上的二极管D2在电源设计中起着关键的保护作用。它能够保护开关管、抑制浪涌电压对系统的影响,并维持整个电路的正常稳定运行。尽管对于D2的作用存在不同观点和解释,但通过深入分析和理论推导,我们揭示了二极管D2的真正作用,为电源设计提供了更准确的指导和优化方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭