当前位置:首页 > 电源 > 电源-LED驱动
[导读] 在上周周五的文章中,我们针对一种大功率LED驱动电源方案的设计原理进行了详细介绍,并对这一LED电源的PFC电路设计方案进行了简析。今天我们将会继续就这一大功率恒流LED驱

 在上周周五的文章中,我们针对一种大功率LED驱动电源方案的设计原理进行了详细介绍,并对这一LED电源的PFC电路设计方案进行了简析。今天我们将会继续就这一大功率恒流LED驱动电源方案展开分享,并针对该方案中的电路设计部分进行重点阐述和介绍。

调光电路设计

相信通过上周周五的恒流LED电源设计原理介绍,大家应该都非常清楚,这一方案主要采用PWM调光的方式来对驱动电源调光电路进行设计。因此,在这一设计的基础上,我们对驱动电路进行了简要的改动设计。下图中,图1是LED驱动电路的结构简图,我们所设计的这一驱动电源在输出端做出了如下图图2所示的改动,即是在输出端LED的灯串中串联一个开关管,通过控制开关管的导通和关断来改变平均输出电流。

从图2所展示的这种大功率恒流LED电源的调光电路图中可以看到,在这一电路系统的设计中,我们选择将NCS1002的Vcc端与V3相连,并将CON2端为输入PWM信号端口。采用该种设计的特点和缺陷非常明显,当输入PWM信号为低电平时,三极管V5的集电极与发射极截止,V3的栅源两端电压为Vcc,约为14V,V3处于导通状态,LED正常发光。而当输入信号为高电平时,V5的集电极与发射极导通,V3的栅源两端电压被拉低,V3截止,LED不发光。考虑到输出端被断开时,采样电阻上不产生电压,为瞬间的开路状态。

图1 LED驱动电路结构简图

图2 调光电路的电路图

因此,在了解了这一调光电路设计过程中的主要问题之后,为了解决这一缺陷,在本次所设计的大功率恒流LED电源的电路系统中,我们特别添加V4和C12。由上图图2可见,V3和V4同时导通和关断,在V3、V4关断时,恒流控制环检测到C12两端的电压,即正常工作时R12两端的电压,称为虚拟电压。而在添加了V4与C12之后,当PWM信号频率足够高时,输出端开路时间很短,C12尚未完全放电,恒流控制环将C12两端电压作为检测到的电压,从而使电路保持正常工作。所以由于虚拟电压,此时的PWM调光电路就不会影响电路的恒流效果了。

变压器匝数计算及设计

在完成了调光电路以及硬件设计之后,接下来我们需要做的是整个LED电源设计中最关键的一部分,那就是完成电源变压器的匝数计算和相关的设计工作。由于在本方案中,我们所设计电路的输出额定功率是75W,因此,我们选择型号为PQ3230的变压器磁芯。查表得其磁芯面积为1.6cm2,驱动电源的效率为85%,这里取输入最小电压120V和最大占空比0.45,则变压器初级的平均电流为Iav=Po/(ηUinmin),经计算得出结果为0.74A。

在已经得出了电源变压器的初级平均电流值之后,接下来我们需要计算的是这一LED驱动电源变压器的初级峰值电流Ipk,为了得到精确的计算结果,此时我们需引入初级的电流变化量△I,与Ipk的比值Krp。由于LED电源的主电路工作在CCM模式,因此取Krp=0.7,则可得出公式为IgvT=(Ipk-IpkKrp+Ipk)ton/2,式中T为工作周期,T=1/∫,ton=TDmax。计算得到Ipk为2.53A,进一步可得到初级的电感量和匝数分别为:

在上述公式中,磁通密度△B的值一般取0.1~0.2T之间。通过对该公式的推导和演算,解得Lp=436μH,Np=33匝。又因输出电压Uo=50V,续流二极管压降Uvo=1V。根据公式Ns=(Uo+UVD)Np/Uinmin,得到次级匝数为14匝,进一步可得辅助绕组匝数为5匝。

实验测试结果

在完成了对该种大功率恒流LED驱动电源的硬件及电路设计好,接下来需要做的就是制作样机并进行实验。首先我们要对未加调光电路的驱动电源进行实验测试。实验条件为输入为90~260V交流电压、负载为75W的LED灯串(即60个3.5V/0.35A的LED灯)。下图中,图3(a)示出全电压下驱动电路输出电流、功率因数及转换效率。

从图3(a)中可以看出,在没有添加调光电路的前提下,当输入交流电压在90~260V之间变化时,这一恒流大功率LED驱动电源的输出电流变化范围为1.472~1.593A,波动率为8.16%。驱动电路的功率因数一直非常高,保持在0.95以上。而当输入电压低于220V时.随输入电压的升高,驱动电路的转换效率逐渐提高,最高可达86%。当输入电压高于220V时,转换效率随电压升高略有下降。

接下来我们在样机在原有的驱动电路上增加本文中所设计的调光电路,在添加调光电路的同时,利用n555定时器电路产生PWM信号输入CON2端口,在220V的输入电压条件下,改变输入PWM信号的占空比。负载仍是75w的LED灯串。下图中,图3(b)示出不同占空比的PWM信号下驱动电路输出电流、功率因数及转换效率。

 

 

(a)

 

 

(b)

图3 输出电流、功率因数及转换效率

 

从上图中图3(b)的LED电源输出电流、功率因数及转换效率曲线图可知,在输入220V交流电压条件下,在这一大功率恒流LED驱动电源的主电路系统中随着PWM 占空比的减小,输出电流也减小,占空比在0.2~1之间变化时.输出电流的变化范围为0.6~1.5A。当占空比大于0I3时,驱动电路的功率因数基本不变,保持在0.9以上。当占空比低于0-3时,功率因数有明显下降,但仍维持在0.88以上。转换效率随着占空比的减小而减小,最低降至约50%。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

无线充电技术(Wireless charging technology;Wireless charge technology ),源于无线电能传输技术,可分为小功率无线充电和大功率无线充电两种方式。

关键字: 无线充电 大功率 磁场共振

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

近日,国内新一代激光陀螺驱动系列功能芯片问世,由湖南二零八先进科技有限公司(下简称“二零八公司”)技术团队研发。相比行业内普遍应用的上一代激光陀螺驱动控制电路,激光陀螺驱动专用芯片降低了电路设计难度,大幅减小体积重量,实...

关键字: 激光陀螺仪电路 芯片 电路设计

R是施密特触发器输入端的一个10KΩ下拉电阻,时间常数为10×10-6×10×103=100ms。

关键字: 复位 电路设计 施密特触发器

学好电子技术基础知识,如电路基础、模拟电路、数字电路和微机原理。这几门课程都是弱电类专业的必修课程,学会这些后能保证你看懂单片机电路、知道电路的设计思路和工作原理;

关键字: 单片机 编程 电路设计

Buck-Boost电路工作原理及其应用你有没有去了解过呢?随着科技的不断发展,电力电子技术在各个领域得到了广泛的应用。其中,Buck-Boost电路作为一种重要的电力电子变换器,具有很高的实用价值。本文将对Buck-B...

关键字: buck-boost 电路设计

本文是开发测量核心体温( CBT )传感器产品的刚柔结合电路板的通用设计指南,可应用于多种高精度(±0.1°C)温度检测应用。

关键字: 温度传感器 电路设计

大功率直流电机在工业、交通和家用电器等领域有着广泛的应用。为了提高电机的运行效率、性能和可靠性,设计合理的驱动电路和测试电源至关重要。本文将通过图解分析的方式,阐述大功率直流电机驱动电路及测试电源的设计原理和方法。

关键字: 大功率 直流电机 驱动电路

自9月22日开始,2023年中国大学生工程实践与创新能力大赛选拔赛在全国各省市陆续展开,10月29日北京、海南、新疆等区域选拔赛成功举办,也为今年的选拔赛画上了圆满的句号。在此,向那些成功晋级国赛的选手们致以热烈祝贺,同...

关键字: PCB 电路设计
关闭
关闭