当前位置:首页 > 电源 > 电源-LED驱动
[导读]现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。COB、4in1等封装形式对材料的选择都不同,尤其是对墨色一致性问题,各种封装路径的处理方式都不一样,具体该如何选择材料?德高化成在这些方面都有哪些解决方案,能否分享一下?

现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。COB、4in1等封装形式对材料的选择都不同,尤其是对墨色一致性问题,各种封装路径的处理方式都不一样,具体该如何选择材料?德高化成在这些方面都有哪些解决方案,能否分享一下?

谭晓华

从LED显示屏技术发展趋势看,无论器件化的EMC灯珠还是COB模组技术都已经在像素点间距指标上进入“0.X”时代,未来两种技术路线谁能成为主流,更多是从产业链是倾向于更高效率的分工协作模式还是贯通式的平台模式。前者依托成熟的封装、显示屏行业分工,有利于打造品质更稳定、成本更低的显示屏产品;后者寄希望于以显示屏作为入口集成更多信息化功能的平台产品。

两种显示屏封装方案分别对应适合其封装要求的封装材料。正装及垂直芯片封装的小间距EMC灯珠采用固态环氧树脂封装,EMC灯珠的名称由来也是从封装材料(Epoxy Molding Compound)的性质所得。固态环氧树脂以其优越的气密性、粘结力和硬度可确保EMC灯珠的PCT可靠性和切割加工便利性。

而采用倒装芯片的大规模阵列COB形态Mini RGB可以采用有机硅树脂封装。高折射率苯基有机硅树脂以其优异低应力表现可充分释放大尺寸基板封装固化后应力,避免基板翘曲;ShoreD65以上的高硬度可保证显示屏表面不粘连灰尘,周边切割尺寸精准利于无缝拼接。

就产品与市场成熟度来看,无疑器件化RGB EMC灯珠是目前市场主流,而EMC环氧树脂是其封装材料。本次讨论就以EMC灯珠和环氧树脂封装材料为主题谈谈德高化成的产品概念。

一般而言,在EMC灯珠封装中,要确保墨色一致性和光学功能一致性,我们通过添加”B、D、F”三种材料来实现:黑色素粉(Black Pigment)、光散射微珠(Diffuser)和高透明无机微珠(Filler with High Transparency)。

显示屏墨色是确保对比度的首要性能,同时显示屏的墨色均一性是直接影响用户感受的核心质量判定标准,因此“墨色”是EMC封装和树脂材料供应商面对的*技术挑战。

树脂黑度越高、显示屏对比度越好;但封装材料透过率下降导致芯片功耗上升且黑色素会吸收积聚热量,*终不利于显示屏的长期工作可靠性。因此寻求黑度(墨色)与透过率的矛盾统一,采用*微小黑素添加量达到至高对比度是显示屏封装材料的*设计要务。

德高化成通过精选并控制黑素的原始粒径与聚集态粒径、强化与树脂混合分散的工艺过程,优化黑色素添加量在万分之五以下(重量比),实现对比度与透过率的*佳平衡。

黑色素在EMC树脂中的分散均一性是灯珠封装厂商的良率*关切因素,也是显示屏厂商组屏后墨色一致性优劣的质量根本所在。树脂端混黑均一性不佳,会导致封装厂成品不得不按灯珠亮度分3-5BIN处理,而混黑控制良好的树脂可帮助封装厂向一个BIN的方向提升良率。

当然,墨色均一性除树脂混黑要因外,与基板墨色控制、基板厚度均一性、封装模具精密程度等诸多封装管理因素亦有相关,因此RGB EMC灯珠封装厂往往都是品质综合管控能力较强的企业。

RGB EMC灯珠中的红光芯片与蓝绿光芯片尺寸不同,发光角度也有差异,因此树脂中有必要添加光散射微珠,使RGB三颗芯片的出光在灯珠内部充分混合,在140º出光角度内以同样的光强分布实现一致的白平衡。采用EMC灯珠混光处理不当的显示屏,在广视角常常出现预设白平衡偏红的现象。

光散射微珠的添加与黑色素添加有类似的光学矛盾对立统一关系,即混光效果越好,出光损失越大,同时散射微珠与树脂结合不佳会导致封装体PCT性能降低。光散射微珠一般由有机树脂制成,常见的有PMMA、有机硅等材料。微珠材质的选择、微珠的粒径分布、以及尽可能压缩散射粉在树脂中的配方量是EMC灯珠整体光学设计和可靠性设计的重要因素。

RGB EMC灯珠封装规格序列由标准品EMC1010起沿着小间距方向不断精简尺寸,向0808、0606方向推进。新兴的4IN1模组也顺利实现了0.7mm间距的“mini尺度”。无论EMC独立灯珠的小型化还是4IN1,在封装设计上都趋向采用更薄型化的基板。

薄型基板与环氧树脂结合后,封装翘曲较普通厚度基板要突出,是影响器件切割效率的“棘手”问题。为降低环氧树脂的固化收缩率及热形变收缩率,在树脂中添加无机填料是EMC封装树脂的通行做法。然而LED封装材料不同于IC封装,通用的Silica填料会使光学封装材料失去透明性。

德高化成开发了专门用于RGB EMC封装的*球化透明无机微珠材料,可维持与纯树脂相当的透明级别,且球化微珠可实现替代部分有机光散射微珠的混光功能,增强了树脂EMC复合物的抵抗PCT能力。在添加量20-50%(wt%)范围内,可大大降低封装后基板翘曲,顺利实现高效率的器件切割。

以黑色素为主的BDF功能材料与环氧树脂的混合,我们可统称加黑过程,分为干法加黑和湿法加黑。干法加黑过程主要基于成品的透明EMC树脂,将其粉碎后混入BDF功能材料,经过树脂粉碎、功能粉体分散、打饼成型而再制成封装厂所需的EMC树脂;湿法加黑过程则必须由树脂的品牌生产厂商在树脂配方混炼阶段加入BDF功能性材料、按树脂配方混炼、树脂粉碎、打饼成型几个工段一次性完成EMC成品生产。

“干法加黑”是当前封装厂广泛采用的方式,封装厂可灵活的根据基板、芯片等变化因素,调节适当的黑度。但粉体作业本身是比较复杂的化工材料生产过程,墨色批次稳定性难以控制,且面临环保和安全生产等诸多约束,封装厂难以实现规模化自制。

此外干法加黑过程,粉末状态树脂易吸湿,存在封装过程中粘模具、封装体空洞增多、封装后器件气密性下降等潜在不利因素。湿法加黑过程有利于产品质量控制,但树脂厂商需具备依据封装厂需求快速调整材料配方的品质管控能力以及批量弹性灵活的生产交付能力。

德高化成可向封装厂提供EMC“干法加黑”代工服务,以及基于自有品牌的TC-7600H-BDF一体化高可靠性RGB EMC封装树脂。现在的LED灯或许会有一些问题,但是我们相信随着科学技术的快速发展,在我们科研人员的努力下,这些问题终将呗解决,未来的LED一定是高效率,高质量的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭