当前位置:首页 > 电源 > 电源电路
[导读]整流电路广泛应用在直流电机调速,直流稳压电压等场合。而三相半控整流桥电路结构是一种常见的整流电路,其容易控制,成本较低。本文中介绍了一种基于 PIC 690单片机 与专用

整流电路广泛应用在直流电机调速,直流稳压电压等场合。而三相半控整流桥电路结构是一种常见的整流电路,其容易控制,成本较低。本文中介绍了一种基于 PIC 690单片机 与专用集成触发芯片 TC787的三相半控整流电路,它结合专用集成触发芯片和数字触发器的优点 ,获得了高性能和高度对称的触发脉冲。它充分利用单片机内部资源 ,集相序自适应、系统参数在线调节和各种保护功能于一体,可用于对负载的恒电压控制。主电路采用了三相半控桥结构,直流侧采用LC滤波结构来提高输出的电压质量。

系统总体设计

本系统通过PIC690单片机作为主控制芯片,用晶闸管 作为主要开关器件。设计的目标是保持输出的直流电压稳定,输出电压纹波小,交流输出测电流THD较低,性能可靠。

系统主要电路包括:三相桥式半控整流电路、同步信号取样电路、单片机控制电路、晶闸管触发电路。首先,由同步信号取样电路得到同步信号并送集成触发芯片TC787,经过零检测,再进行相应的延时以实现移相。单片机中的ADC负责采集直流母线电压,根据电压的设定值与实际值的偏差经过PI运算来调节给定输出。PIC单片机将电压的参考值输出到TC787,由TC787实现对晶闸管的移相触发,以实现整流调压。硬件电路的整体框图如图1所示。

 

单片机芯片的三相半控整流电路设计

 

 

图1 系统硬件整体框图

主电路设计

主电路采用三相桥式半控整流电路,直流测采用LC滤波电流结构,主电流原理图如图2所示。半控桥选择SEMIKRON公司的SKDH146/120-L100模块,该模块额定电流140A,额定电压1200V。直流侧采用LC滤波电路结构,比单独电容 滤波效果好。此外,还可以提高交流输入侧的电流THD。直流侧主要的谐波含量为工频的6倍及6的整数倍,设计LC低通滤波时要避免含量较高的谐波引起的谐振。在本设计中选取电感 5mH,滤波电容480μF。

 

单片机芯片的三相半控整流电路设计

 

 

图2 主电路结构

从电网获得的三相电压经同步电路整形后,送给集成触发芯片TC787引脚18AT、引脚2 BT和引脚1CT。TC787内部集成有3个过零和极性检测单元、3个锯齿波形成单元、3个比较器 、1个脉冲发生器、1个抗干扰锁定电路和1个脉冲分配及驱动电路数字给定移相控制电压,能进行相序自动识别。

控制电路设计

采用PIC16F690作为控制芯片。PIC16F690单片机内部自带10位AD;宽工作电压(2.0~5.5V);低功耗;带有PWM输出功能;内部自带晶振。用芯片内部自带10位AD,对采集到的直流侧电压进行AD转换。为了降低硬件成本,直接采分压电阻 代替电压传感器 来采集直流侧电压,分压电阻上的电压经过两个反向比例电路到单片机。单片机的模拟地和信号地直接相连(也可以通过磁珠相连,以减小干扰)。PIC16F690单片机通过一个IO口使能或禁止芯片TC787的输出,如图3所示。当PIC单片机的I/O口RC3输出高电平(+5V)时,Lock口为低电平;当单片机I/O口RC3输出低电平时,Lock为高电平(+15V)。选用一个IO口作为TC787参考电压的给定信号,采用PWM脉冲方式,调节占空比来调节输出电压, PWM波经过一个RC低通滤波器后为一个近似直流信号,用这个信号作为参考电压给定Uref,其范围为0~5V。由于芯片TC787所需的给定输入范围为0-15V,所以PWM波要经过一个光耦 进行电平转换,如图3所示。

 

单片机芯片的三相半控整流电路设计

 

 

图3 控制电路硬件结构

电网电压经过同步变压器 输入到TC787,TC787的6脚输出高时双脉冲或低时单宽脉冲。12、11、10引脚分别为A、B、C的触发输出端,经过脉冲变压 器输出到晶闸管。

触发驱动电路设计

触发芯片选择高性能晶闸管三相移相触发集成电路 TC787。TC787可单电源工作,亦可双电源工作,主要适用于三相晶闸管移相触发和三相功率晶体管脉宽调制电路,以构成多种交流调速和变流装置。TC787的内部结构如图4所示。

 

单片机芯片的三相半控整流电路设计

 

 

图4 TC787芯片内部结构

在本设计中,TC787采用15V供电,引脚4(Vr):移相控制电压输入端。该端输入电压的高低直接决定着TC787/TC788输出脉冲的移相范围,应用中接给定环节输出。引脚5(Pi):输出脉冲禁止端。该端用来进行故障状态下封锁TC787/TC788的输出,高电平有效,应用中,接保护电路的输出。同步电压输入端:引脚1(Vc)、引脚2(Vb)及引脚18(Va)为三相同步输入电压连接端。应用中,分别接输入滤波后的同步电压,同步电压的峰值应不超过TC787/TC788的工作电源电压VDD。

触发驱动电路主要由电网电压同步电路、TC787集成触发电路和脉冲放大隔离驱动电路组成。图5中给出了同步电路和TC787的外围电路。其前半部分为电压同步电路,采用这种设计方法需要加较多辅助元件。而对RP1~RP3三个电位器 进行不同调节,可实现0~ 60°的移相,从而适应不同主变压器连接的需要。图5中,直接将同步变压器的中点接到(1/2)电源电压上,使所用元件得以简化。TC787的引脚4输出单片机的给定电压(0~+15V),引脚6为触发脉冲封锁引脚。引脚10~12为触发脉冲输出引脚,分别接到C、B、A相的隔离放到电路。

 

单片机芯片的三相半控整流电路设计

 

 

图5 同步电路与脉冲发生电路结构图

电压检测电路设计

为了降低硬件成本,设计直流母线电压检测电路时采用了分压电阻的方法,而没有采用电压传感器。采用这种分压电阻的方法结构简单,易于调试。电路如图6所示。通过分压电阻得到的电压为直流母线电压的1/31,该电压通过两个反向比例放大电路输入到PIC单片机的AD1输入口中,再通过PIC单片机的AD转换处理为数字量。

 

单片机芯片的三相半控整流电路设计

 

 

图6 电压检测电路

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭