当前位置:首页 > 电源 > 电源电路
[导读]现在让我们来看看高频信号电流的环路面积。对于共面带状线,信号电流环路面积近似L×d = 100 mm×0.5 mm = 50 mm2。微带线的信号回路面积是L×h = 100mm×1.5mm =150 mm2。在我们的实验演示中,微带线比共面带状线的电流环路面积大3倍。在高频(> MHz),信号回流会走路最低阻抗径,也是最小电感的路径,通常这条路径也是最小环路面积的路径。电流会尽可能靠近输出电流的路径返回。在微带线的情况下,大部分返回电流直接在信号线下方的地平面回流。

我们都知道信号线与回路的环路面积对电路EMC特性影响很大,理论上环路面积越大,信号的天线效应越明显,EMC特性也越差。其实除了环路面积,电路设计中另一指标对EMC特性的影响还更大。下面通过实验演示给大家介绍。

试验示范

t5.png

图一 印制电路板配置

实验演示包括印刷电路板上的两种配置:共面带状线和微带线(图一)。两条线的长度L= 100毫米。共面带状线:Ws(信号线宽) = Wg(地线宽) =0.5毫米。两条走线之间的距离d = 0.5 mm。微带线:Ws (信号线宽)= 0.5mm。微带线下方的接地平面宽度为Wg= 26 mm。介质高度为h = 1.5mm。铜厚度为35微米,FR4板材料的相对介电常数为εr = 4.7。图二为演示demo板:

9207_152314980.jpg

图二 共面带状线和微带线的测试样板

图三为实际测试布置。测试板上两线路一端接SMA 50Ω负载。线路另一端的用1m长的编织同轴电缆线连接到Rigol DSA815频谱分析仪的信号输出口。信号输出口产生在30-100MHz的频率范围内100dbuv(100mv)的信号。两线路中差模电流

Idm=100mV/50Ω=2mA。使用电流探头检测同轴线缆上的共模电流Icm。电流探头连接到频谱分析仪的输入端,频谱分析仪设置最大保持记录共面带状线和微带线上的共模能量。

t6.jpg

图三 共面带状线和微带线共模电流测试布置

现在让我们来看看高频信号电流的环路面积。对于共面带状线,信号电流环路面积近似L×d = 100 mm×0.5 mm = 50 mm2。微带线的信号回路面积是L×h = 100mm×1.5mm =150 mm2。在我们的实验演示中,微带线比共面带状线的电流环路面积大3倍。在高频(> MHz),信号回流会走路最低阻抗径,也是最小电感的路径,通常这条路径也是最小环路面积的路径。电流会尽可能靠近输出电流的路径返回。在微带线的情况下,大部分返回电流直接在信号线下方的地平面回流。

测试结果和讨论

共面带状线比微带线回流环路面积小三倍的情况下,在30mhz-300mhz的频率范围内,共面带状线比微带线共模能量还要高,最多高20db。

我们知道地线上共模电压的多少取决于地线的分布电感:Vcm = Idm×2π×f×Lg。可用如下公式近似的计算地线的分布电感:

地线分布电感Lg(H)与h(m)成比例,并与Wg(m)成反比。

微带线配置参数为(h=1.5mm,Wg=26mm),通过公式计算的: 微带线的地线分布电感约为:Lg= 36nH / m。共面带状线配置(d = 0.5 mm,Wg = 0.5 mm),地线分布电感约为:Lg = 300nH / m,共面带状线的地线分布电感将近是微带线的10倍。

总结

从实验中我们了解到,虽然微带线的差模电流回路面积是共面带状线的3倍,但微带线的共模能量在频率范围内却要低得多(20 dB)。造成这样结果的主要原因是地线的分布电感。微带线的接地平面具有比共面带状线接地走线低得多的分布电感,这样导致微带线地线上的电压会更低,因此共模能量也会更小。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭