当前位置:首页 > 模拟 > 模拟
[导读]1956 年,英特尔创始人之一戈登·摩尔(Gordon Moore)发表了一篇论文。摩尔通过观察得知:从1958年到1965年,集成电路上容纳的电晶体数量每18-24个月翻一番,他预测这一趋势将会继续延续下去。事实证明,这一规律在近50年依旧有效,也就是著名的「摩尔定律」。

相信大家都知道「摩尔定律」。但是大家所知的摩尔定律仅仅指:在过去的50年里,集成电路上容纳的元器件数目保持指数级的增长,性能不断提升。

然而,你是否知道这种指数级的增长应用范围比你想象地更广。换句话说,这一增长不仅仅局限在计算机领域,其他领域如通信和基因组学也有这样的规律。

这正是雷·库兹韦尔(Ray Kurzweil)所定义的 「加速循环规则」(Law of Accelerating Returns,也被称为库兹韦尔定律)。大意是: 技术的力量正以指数级的速度迅速向外扩充。人类正处于加速变化的浪尖上,这超过了我们历史的任何时刻。他说,更多的、更加超乎我们想象的极端事物将会出现。

本篇文章将简单比较「加速循环规则」和「摩尔定律」的异同,这对理解人类技术指数级增长有着重要意义。

何为摩尔定律?

1956 年,英特尔创始人之一戈登·摩尔(Gordon Moore)发表了一篇论文。摩尔通过观察得知:从1958年到1965年,集成电路上容纳的电晶体数量每18-24个月翻一番,他预测这一趋势将会继续延续下去。事实证明,这一规律在近50年依旧有效,也就是著名的「摩尔定律」。

为了更直观地理解摩尔定律,我们不妨来看看微型集成电路片的演变过程。

1958年,德克萨斯仪器厂(Texas Instruments)的一位科学家开发出了首个集成电路,上面集成了两个电晶体(电晶体越多越好)处理制程(越小越好)大约为0.5英寸。后来,这位科学家或得了诺贝尔奖。

1958年首个集成电路

接着,我们来到13年后。

英特尔4004

1971年,英特尔发布了首款商用产品——一个4位CPU,称之为英特尔4004。4004集成了2300个电晶片,10微米制程,最高频率为740KHz。

算下来,每个电晶体值1美元。

而现在,我们来到40年后......

英伟达的GPU

2012年,英伟达(Nvidia)发布了一款全新的GPU(图形处理单元),含70.1亿个电晶体,制程28纳米,处理能力达到7GHz。

再算一下,每个电晶体值:$0.0000001美元。

仅仅40年的时间里,性能提升了1000亿倍,完全符合摩尔定律。

加速循环规则

但是摩尔定律仅仅揭示了短期计算机能力指数级的增长。

雷·库兹韦尔在著作《奇点临近》一书中写道:计算机领域指数级增长的规律已经存在了近百年,经历了五个不同的演变阶段:

1、电动机械计算机

2、基于分程传递(Relay-based)的计算机

3、基于真空管的计算机

4、基于电晶体的计算机

5、集成电路(摩尔定律)也就是说,摩尔定律仅仅是雷·库兹韦尔加速循环规则的一个字集。

库兹维尔版的摩尔定律,长达110年,涵盖了计算机发展过程的五大阶段

值得一提的是,最近雷·库兹韦尔称第六个演变阶段——三维计算机——已经开始。

为什么科技会不断发展?

理解加速循环规则潜在的驱动力,即,为什么科技会不断发展,非常重要。正如雷·库兹韦尔所说的「21世纪的科技进步不仅仅是100年的进步,以如今的发展速度,这将会是2000年的进步。」

这一推断并非空穴来风,而是基于以下基本推断:

1、进化(无论是生物上的还是技术上的)的结果就是更加优秀的下一代产品。因此,更优秀的产品则有着更强大的生产力,然后这一生产力又投入下一代产品的进化历程,这是一个良性循环。

2、换句话说:我们使用更先进的工具去开发更快的工具。

3、在生物学的进化中,更高级的物种形式能够聚集更多能量,从而繁衍效率更高,从而将更低级的物种甩在后面。

4、其结果就是:进化速率随着时间变化呈指数级增长,而处在循环链上的速度、成本或者整体的「性能」也会相应地呈指数级增长。

5、随着某一特定的进化流程(如,计算能力)变得更有效率,便会节省更多资源,将这些资源部署到进一步提升效率的流程中。其结果就是促进二级指数增长。生物是否也以指数级进化?

按照雷·库兹韦尔的说法:加速循环规则同样适用于地球生物的进化历程。

回首地球生物的演变过程,首先是DNA的出现,提供了一个记录进化结果的数字工具;然后是细胞、组织、器官和生物多样性的进化,最终将理智思想和对称的附属物(如手)结合起来,完成了生物学到技术的本质改变。

技术发展的第一步——尖锐的边缘、火和轮子——花了将近上万年的时间。从人类诞生至今,曾有1000多年的时间没有任何突出的科技进步。到了公元1000 年,技术发展速度明显提升,走过一个演变阶段(paradigm)只需要一到两个世纪。仅19世纪这一百年的技术进步就超过了之前9个世纪,接着在20世纪的前20年,科技进步就超过了整个19世纪。如今,每个演变阶段之间的过度只有几年的时间,比如,十几年前,万维网这类的事物根本就不存在,而现在,已经遍地开花。这种趋势还会不断地持续下去,我们将会不断解锁难以想象的新技能,甚至去解决最无解的难题。

生于当世,何其幸哉!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭