当前位置:首页 > 模拟 > 模拟
[导读]市场研究机构Yole Developpement的最新报告指出,仅管微机电系统(MEMS)产业的标准化尚未落实,各大公司仍致力于让自己的技术平台最佳化;这方面的制程革新也将驱动 MEMS 设备及材料在2012到2018年间达到7%的年复合成

市场研究机构Yole Developpement的最新报告指出,仅管微机电系统(MEMS)产业的标准化尚未落实,各大公司仍致力于让自己的技术平台最佳化;这方面的制程革新也将驱动 MEMS 设备及材料在2012到2018年间达到7%的年复合成长率。
制程革新将点燃MEMS的设备与材料市场,Yole Developpement预期 MEMS相关制造设备市场将在接下来五年内,以5.2%的年复合成长率从2012年的3亿7,800万美元,在2018年成长至5亿1,000万美元以上;值得注意的是,Yole Developpement预期MEMS的设备市场的循环周期模式将与主流IC设备市场相当。

而在接下来五年,MEMS材料与相关的消耗品之需求将以10.5%的年复合成长率,从2012年的1亿3,600万美元成长到2018年的2亿4,800万美元以上。


全球MEMS设备与材料需求 (单位:百万美元)
(来源:Yole Developpement,2013年2月)

目前,MEMS的制造仍相当多元且欠缺标准化;仍采用Yole Developpement所形容的「一种产品,一套制程」规则。其实MEMS的历史与一般IC产业不同,且其技术蓝图也与半导体产业有所不同。因此,以完全不同制造方式制作相同MEMS装置的业者处处可见,有时还甚至来自同一家公司(例如,CMOS MEMS及混合途径方法都可用于惯性感测器或麦克风)。

然而,当MEMS与前代产品相比成为可快速攻入市场的商品化产品时,任何能够加速商业化流程的事宜也都会广受欢迎。MEMS的封装正朝向与前端制程不同的方向演进,且Yole Developpement已经注意到,封装标准化对于支援产量大幅成长的产品出货之重要性将会提高,而与MEMS与感测器内容相关的整体成本将会降低(例如,制造商之间的麦克风封装方式大都相同)。此外,这份报告也显示在前端制程方面,各大公司都正在发展针对不同MEMS装置的独家技术平台。


MEMS的前端制造发展趋势
(来源:Yole Developpement,2013年2月;图表显示新MEMS制程采用的时间表。箭头左侧表示技术的开始采用时间--例如,DRIE是从96年时开始运用于Bosch惯性MEMS--Yole Developpement预测在未来将可看到越来越多创新的MEMS制程:TSV、微影步进机、薄晶圆的暂时性接合、室温接合)

Yole Developpement的报告中,也揭示当MEMS从制程技术性的竞争移转到功能及系统性的竞争时,就有必要采用标准途径来降低封装尺寸及成本。目前,MEMS代工厂仍处于制程技术性的竞争阶段,且必须以更广泛的制程技术来因应新的MEMS设计及结构。

这种技术途径与通常只专注于单一类型MEMS设计的无晶圆厂公司是不同的,该种公司的主要任务是找到最有经验与可靠的代工夥伴来说服客户自己的强项所在;同时,整合元件大厂(IDM)则通常是仰赖已制式化运作的MEMS制程来制造其产品(如ST的THELMA)。由于总是必须面对MEMS制造技术前景的最前线变革,故代工厂的挑战也往往是最大的。

Yole Developpement的MEMS的前端制造发展趋势报告也清楚点出了主要的前端制造技术改革;例如,晶片尺寸封装(CSP)技术中的矽穿孔(TSV)也正逐渐渗透到MEMS产业。在此方面,该机构分析了意法半导体(STMicroelectronics)自家工厂采用TSV来接合MEMS晶片与主机板的独家方法。

ST的方法免除焊垫(bond pad)的需求,将之以使用气隙蚀刻(etched-out air gaps)绝缘的多晶矽通孔来取代;采用其基础MEMS制程,但规模约十倍大。根据ST的报告,减少了20%~30%的晶片尺寸,可抵销采用TSV制程微增的成本,使得总成本反而降低。


MEMS结构层制造流程实例
(来源:Yole Developpement,2013年2月)

然而,因为晶片小型化有其限制,故各个研发机构正着手发展新的检测原理(例如,Tronic的M&NEMS概念)来降低MEMS的矽晶片尺寸。此技术是基于压阻矽奈米线(piezoresistive nanowires)而不是纯电容式检测(capacitive detection),且着眼于装置效能及晶片尺寸上的技术跃进。此举将奠定新一代动作感测应用的组合式感测器基础,且可让多自由度感测器明显的减少表面积及改善效能。

Yole Developpement在一系列的MEMS技术中列出数种可望在未来几年崭露头角的技术,包括:矽穿孔、室温接合、薄膜PZT、暂时性接合、Cavity SOI、CMOS MEMS。其他的MEMS 技术(如金接合),亦可能广泛运用于缩减晶片尺寸且同时维持晶圆级封装的高度密封性。




    
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭