当前位置:首页 > 汽车电子 > 汽车电子
[导读]通过充分利用互补金属氧化物半导体(CMOS)技术,并将嵌入式微控制器(MCU)和数字信号处理(DSP)以及智能雷达前端集成在内,TI日前推出了横跨具有完整端到端开发平台的76-81GHz

通过充分利用互补金属氧化物半导体(CMOS)技术,并将嵌入式微控制器(MCU)和数字信号处理(DSP)以及智能雷达前端集成在内,TI日前推出了横跨具有完整端到端开发平台的76-81GHz传感器系列:AWR1x和IWR1x。全新毫米波传感器产品组合中的5款器件都具有小于4厘米的距离分辨率,距离精度低至小于50微米,范围达到300米。同时,功耗和电路板面积相应减少了50%。

告别锗硅

其中,AWR12主要应用于自适应巡航、AEB等强调高精度、高速度的长距离雷达应用;AWR14则增加了MCU(采用ARM Cortex-R4F核),可以在一些以前非常规车身传感器检测应用上面发挥作用,例如开门预警、车周探测、检测驾驶员的呼吸和心跳、以及乘员监测等;AWR16是一个单芯片解决方案,集成了RF、MCU和DSP处理功能,其典型应用就是检测车周边的环境,包括盲点检测、防后方碰撞/警告、车道变更辅助、交通路口警报等,并由此在车辆周围建立起3D感知环境。

目前大多数商用雷达系统,特别是高级驾驶员辅助系统(ADAS)中的雷达系统,均基于锗硅(SiGe)技术。尽管性能符合要求,但TI汽车雷达产品营销总监Sudipto Bose认为其主要缺点在于体积过大、过于笨重,占用了大量电路板空间。“要建立起完整的车辆3D感知系统,至少要在汽车的前、后以及车角处放置10个雷达传感器,空间上的限制就要求每个传感器必须体积更小、功耗更低,并且性价比更高,基于SiGe技术的雷达系统会越来越难以符合要求。”

 

TI汽车雷达产品营销总监Sudipto Bose

以79GHz频段为例,该频段可提供4GHz带宽,这对更高范围的分辨率至关重要。未来的雷达系统还将需要对短距离的支持,将更佳的角分辨率转化为雷达系统内的更多天线。而CMOS技术的传统优势包括更高的晶体管密度和更低功率。CMOS内的数字缩放降低了功率,缩小了尺寸,并且提高了每个节点的性能。同时,CMOS技术进一步提高了在模拟组件中嵌入数字功能的能力,从而实现了在雷达系统部署方面的全新系统配置和拓扑。

为什么选择76-81GHz频段?

通常,开发人员在车辆中创建美国汽车工程师学会(SAE)国际2级及以上功能时会遇到阻碍,主要来自传感器尺寸和为特定组件供电。通过配置TI AWR1x 毫米波产品组合,设计人员不但可以实现汽车安全完整性等级(ASIL-B)的ISO 26262,还提供了自动泊车辅助、行人探测,以及承载率和驾驶员监控等全新特性。

智能化与环境灵活性方面,AWR1x系列可以动态地适应不断变化的情况与条件,支持多种功能模式,以避免误报,并为多种应用提供大范围的感测。“动态频率调节是一个非常重要的功能。”Sudipto Bose说,随着车载雷达的运用越来越多,车辆需要能够自主感知到对方车辆雷达的频率,并经由车内电控单元和总线进行实时动态调整。同时,雷达传感器还必须要能够透过塑料、干燥墙壁、衣服、玻璃和很多其它材料,以及穿过光照、降雨、扬尘、下雾或霜冻等环境条件进行感测。

之所以选择76-81GHz频段,而不是其他厂商看好的24GHz频段,Sudipto Bose解释说,从24GHz向77GHz迁移已经是“大势所趋”,因为雷达探测的准确率取决于雷达发射脉冲的有效频段,24GHz中只有0.5兆带宽用来取样,但77GHz中就会多达5-6G,从而带来精度的大幅提升。此外,77GHz的天线较短,1/4波段的天线设计将比24GHz缩小1/3,整个产品做出来会比24GHz小很多。

将毫米波感测引入到工业应用中

毫米波传感器技术在汽车领域非常成功,不过设计人员目前正在解决这项技术扩展至其它市场时所面临的挑战,比如说楼宇和工厂自动化应用领域。上述领域所遇到的问题是,此前的雷达系统都是分立式设计,导致了复杂的硬件设计和软件开发,提高了准入门槛。

“但单芯片10mmx10mm IWR1x传感器的推出,降低了毫米波感测的准入门槛。”TI工业雷达产品营销总监Robert Ferguson说,借助IWR1x传感器,用户就不用再去处理分立式前端、模数转换器和处理器件之间的复杂高速数据和通信走线,也不用处理额外尺寸、功率和支持它们的相关物料清单成本。而且这个集成度还简化了软件设计过程,极大简化了器件配置、监控和校准。通过利用包括示例算法和软件库在内的TI毫米波软件开发套件(SDK),工程师可以在不到30分钟内开始他们的应用设计工作。

Robert Ferguson列举了三个最为典型的工业应用场景:液位感测、交通监控和无人机。

液位感测是工厂内仓储和测量不同化学品的一个重要部分。由于这些化学品具有腐蚀性或毒性,必须在非直接接触的情况下测量剩余的液体体积。mmWave感测提供高精度测量值,并且在灰尘、烟雾或极端温度等环境条件下具有稳健耐用性。IWR1x 射频前端是高度线性的,其超宽(连续4GHz,5GHz拼接)带宽可以在深度1m至80m的液罐内实现极精确的亚毫米测量。针对77GHz级发射器参考设计的功率优化设计给出了如何优化在4-20mA功率受限系统内运行的IWR1443。

交通监控的目的在于通过掌握与车辆和行人有关的特定信息和遥感数据,对路口的情况做出及时应对,并且搜集交通统计数据,以提高运输效率。毫米波传感器可以实现对车辆位置和速率的测量,并且能够探测速率高达300kph、距离在150m和更远范围以外的物体。

为了实现安全性、提高平台的生产力,无人机设计人员面临诸多挑战,包括使无人机能够探测障碍,并且在最危险的飞行情况下为操作人员提供辅助。无人机要求高速物体探测功能,并且能够在100m距离内跟踪大小为数厘米的物体,比如当无人机接近地面或在物体周围运行时。由于无人机是由电池供电运行的,为了延长飞行时间和提高有效负载,解决方案应尺寸小巧、重量轻。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭