当前位置:首页 > 智能硬件 > 智能硬件
[导读]我现在得出了一个结论,我们中的绝大多数人对未来科技走向毫无头绪。我们只是忙着推动科技进步,甚至连方向是否正确都不清楚。丰富的旅行经验告诉我们一个常识,长途旅行必须理清两个问题:1. 我现在哪儿? 2. 我要

我现在得出了一个结论,我们中的绝大多数人对未来科技走向毫无头绪。我们只是忙着推动科技进步,甚至连方向是否正确都不清楚。丰富的旅行经验告诉我们一个常识,长途旅行必须理清两个问题:

1. 我现在哪儿?
2. 我要去哪儿?

科技领域同理,我们需要弄清楚自己是不是正朝着正确的方向前进。所以我请TI的一些高级技术人员思索2020年IC科技尖端的水平会发展到何种程度。你也许会说我们得有十倍于双2.0的视力才能看清2020年的情况。

下面是我对这一主题的初步感想。

处理单元(Processing Element, PE)将变成单时钟域。多年来我们相信摩尔定律将带来越来越快的时钟频率。现在终于发现时钟频率并非我们的朋友。事实上,我们早在15年前就该意识到这个问题。不过随着技术的进步,处理单元将变得足以让CPU在一个时钟周期内完成所有与资源的通信。

系统将由多个处理单元构成。嵌入式系统由很多异构处理单元构成,每个处理单元都是一个“单时钟域”处理器。处理单元的布局将类似现在的FPGA。
我们将发挥三维空间的优势。通过堆叠封装技术进行整合将会像片上系统一样平常。
开发者都将用高级语言编程。开发环境可以掌控系统的所有资源,包括微处理器、DSP、加速器、外设、模拟信号处理器、模拟外设、RF无线射频等等。

IC设计将由更小的团队(5-10名设计师)完成,硬件设计及所需时间更短(6-12个月)。复用(Reuse)将会成为常态。我来解释一下复用的两种定义:

1. 我的设计工作完成的很出色,其他人以后都用它。

2. 我没时间重复设计,所以需要找到足够相近的设计以保证按时完成任务。

不幸的是现在第一种定义更为常用。小设计团队加上更紧张的时间限制迫使我们采用第二种定义,现在已经有公司这么做了。

大部分创新将在硬件基础之上的软件内完成。

硬件将成为创新设计人员实现构想的平台的组成部分。

这是我对2020年的初步看法,虽然预测未来主要依靠想象力。不过dsp显示出一些强烈的趋势,我认为未来几年的发展是可预测的。

2009年:多核已经上市。随着片上系统体系结构越来越多地被采用,单核CPU设备将越来越少。

2012年:片上网络(Network-on-Chip,NoC)到来。片上网络是一种高性能设备,通过分组点对点异步高速通信通道连接处理单元。

2010-2015年:组件式软件。一个设备上的内核数量仍然有限,“组件开发者”开发单独的软件组件用于单个计算集群单元,然后再组装为一个多核系统。基于该原则的开发工具提升了稳定性,因为软件通信体系结构(SCA,用于SDR,软件定义无线电驱动了硬件通过中间件实现虚拟化。

2015-2020 年:单程序多数据(Single program multiple data, SPMD)。内核数量达到32个以后,组件式方法将逐渐失效,继而转向高性能计算(high-performance computing , HPC)中所采用的SPMD。嵌入式软件社区负责开发SPMD方式,让程序在编译后同时运行于多个内核。最初需要通信流(communication flow)的明确解释,现在选派(pragmas)被引入激发算法的天然的并行优势,以深挖多核设备的潜能。

2015:FPGA的终结。这将是可编程性发展史的里程碑。相比组成FPGA的ALU/LUT分布式结构,小型多核CPU在显著降低功耗的同时,为复杂算法和通信模式提供了更丰富的映射选项。

2020:CPU消失。功能在多CPU上的分散处理急剧简化了每个CPU的硅成本,而基于硬件的操作系统支持可以高效管理片上网络传输。程序员无需留意CPU间通信,可以在不知晓具体有哪些独立执行单元参与的情况下进行开发、debug。编程更关注总体数据流而不是独立的部分。

2020年的产品品种和2009年相比不会有太大变化。2020年,嵌入式DSP仍将是各种CPU和加速器的多样化组合。即便程序员在编程时不再留意各设备的差异,有些设备在执行特定任务时表现更好这一现象未来不会改变。

因为片上系统的价值很大程度上建立在外围设备的悉心挑选之上,CPUDSP制造商的差异体现在各种IP模块组合与连接方式。最后,开发工具品质和应用软件支持将决定谁能成为第一流厂商.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭