当前位置:首页 > 智能硬件 > 智能硬件
[导读](21ic电子网配图)【OFweek电子工程网原创】:惠普实验室高级研究员Stan Williams表示,惠普公司自2008年开始研发的忆阻器非易失性内存技术将于一年半后上市,将抢占闪存芯片市场。Williams在国际电子论坛上表示:&

(21ic电子网配图)

【OFweek电子工程网原创】:惠普实验室高级研究员Stan Williams表示,惠普公司自2008年开始研发的忆阻器非易失性内存技术将于一年半后上市,将抢占闪存芯片市场。

Williams在国际电子论坛上表示:“惠普与海力士半导体公司合作,计划于2013年夏推出闪存的替代芯片,并进军固态硬盘市场。”

惠普发言人补充道,目前还没有确切的忆阻器产品规划,但惠普力争在2013年底推出忆阻器产品。

Williams表示,到2014或2015年,惠普将继续进军DRAM和SRAM市场。他相信忆阻器将很快成为通用性存储介质。

Williams将惠普的阻变存储器技术与闪存技术进行了比较,并称惠普的阻变存储器技术将在各方面达到或超过闪存的性能。

过去三年,惠普已经取得了忆阻器方面500项专利。变相存储器(PCM)、阻变存储器(RRAM)和其它双端存储设备都属于忆阻器产品。Williams还透露很多其它公司也在研究金属氧化物RRAM。三星现在也有一个比惠普更强大的研究团队致力于忆阻器技术研究。

 

1  2  

原文:HP, Hynix plan to launch memristor memory in 2013

The ‘memristor’ two-terminal non-volatile memory technology, in development at Hewlett Packard Co. since 2008, is on track to be in the market and taking share from flash memory within 18 months, according to Stan Williams, senior fellow at HP Labs.

“We have a lot of big plans for it and we‘re working with Hynix Semiconductor to launch a replacement for flash in the summer of 2013 and also to address the solid-state drive market,” Williams told the audience of the International Electronics Forum, being held here.

A spokesperson for HP added that there is no definitive memristor product roadmap as yet, but confirmed that “HP has a goal to see memristor products by the end of 2013.”

Williams said that the memristor metrics being achieved, in terms of energy to change a bit, read, write time, retention and endurance, were so compelling that flash replacement was effectively a done deal. “So in 2014/2015 we’ll be going after DRAM and after that the SRAM market,” Williams said indicating his confidence that the memristor would quickly become a universal memory.

Williams declined to discuss in detail the process technology, memory capacity or memory-effect material that Hewlett Packard and Hynix are working with. “We‘re running hundreds of wafers through a Hynix full-size fab. We’re very happy with it.” But Williams did disclose that the first commercial memory would be a multi-layer device.

When challenged over the cost of the technology, which would be the barrier to competing against the high-volume flash memory market, Williams said: “On a price per bit basis we could be an order of magnitude lower cost once you get the NRE [non-recurring expense] out of the way.”

The memristor, named after the combination of memory and resistor, was originally a theoretical two-terminal device for which the electrical behavior was derived by Leon Chua in 1971. However, in 2008 researchers from HP published a paper in Nature that tied the hysterical I-V characteristics of two-terminal titanium oxide devices to the memristor prediction of Chua. “What we found is that moving a few atoms a fraction of a nanometer can change the resistance by three orders of magnitude,” said Webb. “In fact many nanodevices have inherent memresistive behavior,” he said.

HP has amassed some 500 patents around the memristor over the last three years. He also acknowledged that phase-change memory (PCM), Resistive RAM (RRAM) and other two-terminal memory devices are all memristor-type devices. Williams acknowledged that many other companies are working on metal-oxide resistive RAMs. He said that Samsung now has a bigger research team working on the technology than does HP.

Williams touted the cross-point nature of the memristor memory switch or resistive RAM device as a memory capacity advantage over flash memory. “Whatever the best in flash memory is, we‘ll be able to double that.”

Implication logic and the synapse

Williams compared HP’s resistive RAM technology against flash and claimed to meet or exceed the performance of flash memory in all categories. Read times are less than 10 nanoseconds and write/erase times are about 0.1-ns. HP is still accumulating endurance cycle data at 10^12 cycles and the retention times are measured in years, he said.

One of the best things about the memristor memory is that it is a simple structure made using materials that are already common in the world‘s wafer fabs making CMOS-compatible devices relatively straight forward, he said.

This creates the prospect of adding dense non-volatile memory as an extra layer on top of logic circuitry. “We could offer 2-Gbytes of memory per core on the processor chip. Putting non-volatile memory on top of the logic chip will buy us twenty years of Moore’s Law, said Williams.

Further out Williams said the memristor could be used for computation under a scheme called ”implication logic“ in a fraction of the area taken up in CMOS by Boolean logic. In addition a memristor device is a good analog of the synapse in brain function.

In conclusion Williams stressed that HP would not be getting into the semiconductor components business but would seek to commercialize and then license the technology to all comers.

1  2  
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭