当前位置:首页 > 单片机 > 单片机
[导读]Arm宣布针对其下一代Armv8.1-M架构推出基于M-Profile Vector Extension (MVE)矢量扩充方案的Arm Helium技术。这一全新技术能够帮助开发者简化软件开发流程,并显著提升未来Cortex-M系列处理器的机器学习能力与信号处理性能。

新闻摘要:

·Arm Helium技术作为一种全新的M-Profile Vector Extension矢量扩充方案,能为Armv8.1-M架构带来经过强化的计算能力

·新架构能够将最小型边缘设备的机器学习能力提升15倍,以及将信号处理性能提升5倍

·新架构针对下一代Cortex-M处理器而设计,适用于需在本地进行决策的小型嵌入式设备

Arm宣布针对其下一代Armv8.1-M架构推出基于M-Profile Vector Extension (MVE)矢量扩充方案的Arm Helium技术。这一全新技术能够帮助开发者简化软件开发流程,并显著提升未来Cortex-M系列处理器的机器学习能力与信号处理性能。

业界正在加速推动创建一个拥有万亿互联设备的世界,而要实现这一愿景,我们必须找到行之有效的方法来扩展网络边缘众多受限设备的计算能力。通过提升这些设备的计算能力,开发人员能够直接为设备编写机器学习(ML)应用程序,并在设备本地实现自主决策,从而在提高数据安全性的同时,降低网络能耗、延迟和带宽使用量。

为达成这一目标,Arm推出Arm Helium技术,该技术针对Arm Cortex-M系列处理器设计,在Arm TrustZone的安全基础上,通过M-Profile Vector Extension矢量扩展加强Armv8.1-M架构的计算性能。Helium将为未来的Arm Cortex-M系列处理器提供高达15倍的机器学习性能提升和高达5倍的信号处理性能提升,消除因性能挑战造成的对低成本、高能效设备的使用限制,从而为我们的合作伙伴带来全新的市场机遇。

下一级计算性能

先进的数字信号处理(DSP)可通过 Arm Neon 技术扩展至更多Cortex-A架构组件中。针对功能受限的应用,Arm还在其较高性能的Cortex-M处理器系列(包括Cortex-M4、Cortex-M7、Cortex-M33以及Cortex-M35P)中加入DSP扩展方案。这两种技术都可用来加速特定应用的机器学习计算。

针对功能最为受限的嵌入式系统,功耗效率是优先考虑的因素,以往的解决方案将Cortex处理器搭配SoC芯片内的DSP处理器,但是这种作法也增加了硬件与软件设计的复杂性。当我们希望在这些设备上集成更多机器学习功能时,现有的SoC开发挑战将变得更加突出,因此在运用不同的工具链、编程、调试以及使用各种复杂的专有安全解决方案时,需要开发人员拥有更高水平的专业知识。

搭载Helium技术的Armv8.1-M 架构能克服上述难题,不仅能够提供实时控制程序代码、机器学习与DSP执行能力,而且效率丝毫不减。由此,数百万软件开发人员将能够运行各种DSP功能,安全无虞地扩展各种智能程序到种类更广泛的设备,强化对三种关键类别新兴应用的信号处理支持:震动和运动、语音和声音、以及视觉和图像。新一代搭载了Helium技术的Cortex-M架构SoC将改进未来各种设备的用户体验,包括传感器中枢设备(sensor hub)、可穿戴设备、音频设备、工业应用等。

除提升性能、降低开发成本之外,SoC设计和开发团队还将立即获得以下优势,包括:

•通过功能整合,优化成本、功耗以及设计投入

•利用 Armv8.1-M的设计遵循平台安全架构(PSA)规范的特点,实现简化的TrustZone部署

•单一工具链涵盖控制与信号处理软件的开发

•简化的软件开发,得益于成熟的 Helium生态系统所提供的完善的工具、模型和库,其中许多资源已被Cortex-M开发者广为使用

简化软件开发流程

由于Helium拥有统一的工具链、库和模型,软件开发将变得更加简单。 Helium工具链包括Arm Development Studio,涵盖Arm Keil MDK、Arm模型(开发人员可立即使用,用于代码建模)和各种软件库,包括CMSIS-DSP和CMSIS-NN,允许开发人员根据他们的需求选择最合适的资源。对于信号处理应用,我们通过消除对专用DSP或功能加速器的需求以及免去了一层设计复杂性,使之更加简化。

驱动下一代嵌入式和物联网设备

Helium将Arm Project Trillium计划的价值带到各种机器学习应用中,让框架与库的支持能力向下延伸到硬件层面。由于SoC开发者必须在不同的性能、芯片面积、功耗以及成本等限制下开发适合的方案,因此没有单一的产品能满足所有应用的需求。

我们现已推出Helium专属的工具链与模型,预计在未来2年各伙伴厂商将陆续推出采用Helium技术的芯片。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭