当前位置:首页 > 显示光电 > 显示光电
[导读]美国Plastic Logic备受关注的全球首款有机TFT电子书终端预计将推迟到2010年夏季供货(参阅本站报道)。作为一款有望为FPD开辟新的可能性的商品,其供货的推迟令人颇感遗憾,不过说实话,有机TFT要进入全面量产阶段,

美国Plastic Logic备受关注的全球首款有机TFT电子书终端预计将推迟到2010年夏季供货(参阅本站报道)。作为一款有望为FPD开辟新的可能性的商品,其供货的推迟令人颇感遗憾,不过说实话,有机TFT要进入全面量产阶段,也许还的确为时尚早。为何要采用有机TFT?真的必须是有机TFT吗?这样的疑问经常出现在笔者脑中。

Plastic Logic曾在2009年6月举行的显示器领域最大的学会“SID”上发表过主题演讲。其发表资料宣称,该公司的制造工艺可使用低价位的 PET(Polyethylene Terephthalate)底板,能够使用基于标准FPD生产设备的印刷工序来制造有机TFT阵列。而且该公司认为,利用变形校正技术还可实现大尺寸化(参阅本站报道)。不过,该公司并未公布具体的技术内容,因此详细情况不得而知。

对此,可供参考的是2005年举行的显示器相关学会“IDW/AD'05”上发表的论文,做法是在PET底板上形成聚芴类有机半导体层,并在上面涂布聚合物绝缘膜,由此形成TFT。这是一种像素电极也采用导电性聚合物(PEDOT/PSS),完全以涂布工艺直接进行印刷的极为前卫的技术。假如利用这一技术开始量产的话,就会实现巨大突破。不过,凭自己长年从事FPD研究的经验来看,笔者感觉要想解决成本及可靠性问题,进而实现全面普及,还需要相当长的时间。

有机TFT的应用范围

以前业界就在对有机TFT进行各种应用研究,但有机TFT实际能够在什么领域发挥出无机TFT所不能实现的优势呢?图1根据可以组合的技术,对有机 TFT的应用领域进行了大致分类。在该图中,越往下的领域,其技术上的难度就越高(也就是说,对TFT的性能要求就越严格)。

图1:有机TFT的应用范围该图由笔者制作。(点击放大)


其中,最被看好的是与电泳显示器(EPD:Electrophoretic Display)组合的柔性电子纸应用。电泳显示器不以视频显示为前提,因此要求的电流值比液晶显示器(LCD:Liquid Crystal Display)低,而且擦写次数也远比LCD少,所以可大幅减缓由驱动条件造成的特性下降。虽说不是不可以应用于LCD也,但优点不如EPD那么突出。

要想应用于有机EL(OLED:Organic Light Emitting Diode)显示器的话,也许还要大幅改善特性。而应用于无线电路时,成本和性能要求会更为苛刻。

另外,在医疗器械领域应用有机TFT时,不仅期望值大,而且也存在市场。原来采用无机器件的传感器芯片等容易损坏,而且难以进行循环再利用,而只在树脂底板上构成有机物的传感器芯片既不易损坏,也可100%循环再利用,十分环保。在该领域的应用虽说技术上难度极大,但长期来看市场有望增长,对FPD技术实现新的发展也颇具意义。

柔性显示器用背板技术的比较

如果说有机TFT最看好的应用领域是EPD等柔性显示器的话,那么与其他TFT技术比较又有哪些优势呢?这里通过表1试着对其特点进行了汇总。

表1:柔性显示器用背板技术的比较 SUFTLA:Surface Free Technology by laser Annealing/Ablation(向剥离层照射激光剥离玻璃底板上的TFT后转印至另一种底板的方法。由精工爱普生开发。)。 SAIL:Self-Aligned Imprint Lithography(只需一次光刻胶印刷结合数种蚀刻即可形成TFT,因此无校正误差。由美国Phicot、美国Power Film及美国惠普(HP)组成的研究小组开发)。该表由笔者制作。(点击放大)


虽然以前业界已利用非结晶硅(a-Si)TFT试制出了LCD、EPD及有机EL等多种柔性显示器,但遗憾的是一直未实现实用化。其最大原因在于,为了确保a-Si TFT的特性,需要在300℃以上的温度下进行等离子体CVD成膜,降低处理温度的话,特性和可靠性就会大幅降低。而氧化物半导体是以溅射法形成,因此能够在低于a-Si TFT的温度下成膜。从为了确保可靠性而公认所需的退火条件来看,可以说氧化物半导体已经具备足以使用树脂底板的可能性。也就是说,有机TFT的最大竞争对手就是氧化物TFT。

除此以外,目前还有一种将原来的低温多结晶硅(LTPS)TFT从玻璃底板转印至树脂底板上的技术。笔者认为,有机TFT及氧化物TFT要实现全面量产还需要时间,因此也许还可采取运用LTPS技术稳步开辟柔性市场的战略。虽然该技术在大尺寸化方面存在难度,但如果对日本大量存在的、折旧结束后的 LTPS生产线进行改造,作为基于转印技术的柔性显示器专用生产线进行再利用的话,也许就可形成所希望的业务。

在有机TFT的优点中常常被人提到的一点是可用于卷对卷(RTR:Roll To Roll)生产。对于印刷行业来说,也许RTR确实是一种可有效降低成本的手段,但从制造电子器件这一目的来考虑的话,RTR反而存在成本升高的危险。其原因在于,即使是采用涂布工艺直接形成图案,也仍然要对各层进行干燥及退火处理,往往需要投入额外的成本来校正由此产生的变形及拉伸。在利用有机TFT以外的手段来实现RTR的事例中,惠普(HP)、Phicot及PowerFilm三家美国公司共同开发的“SAIL(Self-Aligned Imprint Lithography)”可谓独具特色(参阅本站报道)。

该技术采用a-Si TFT而非有机半导体,因此还需使用溅射及等离子体CVD装置,但优点是只需以一次印刷形成光刻胶后再结合使用干、湿蚀刻技术,即可形成TFT元件。由于器件结构特殊,要确保成品率并不容易。但是要通过RTR来生产大面积显示器的话,定位精度就会成为致命问题,因此这种思路转换或许也是有必要的。

与原来的TFT相比,也许以非真空工艺(涂布工艺)直接形成图案的方法的确能够大幅降低成本,而反过来也可以说,有机TFT只有实现这一点才会拥有存在价值。首先要能够放心地在粘贴于玻璃底板上的树脂底板上使用,这就需要开发能够确保制造出高质量产品的制造设备,在可靠性上还可经受长期保存考验的材料,以及可使这些材料的特性稳定再现出来的溶剂。

从论文发表情况看技术开发动向

表2列出了09年显示器国际学会“SID”、“IMID”及“IDW”的口头报告会上发表的主要有机TFT应用器件的开发事例。由此可以看出,所有开发均以使用树脂底板的全印刷工艺为目标,方向上与笔者的上述观点吻合。但从实际商品的性能指标来看,阈值电压(Vth)漂移量等还不够完善,今后需要进行大幅改进。而反过来说,在这种行业技术水平下,Plastic Logic做出量产决定,其本身就是常识上难以置信的事情。[!--empirenews.page--]

表 2:2009年“SID”、“IMID”、“IDW”的口头报告会上发表的主要有机TFT应用器件 TSP-μCP:Two Step Process micro Contact Printing。fCP:Flat Contact Printing(Ink transfer with unpatterned PDMS)。DNTT:二萘并噻吩并噻吩。CYTOP:非晶态氟化树脂(旭硝子研制)。PXX:Peri-Xanthenoxanthene Derivative。PVP-OTS:在聚乙烯吡咯烷酮中混合十八烷基三氯硅烷而成。PQT-12:Poly(3,3 '''-didodecylquaterthiophene) 。该表由笔者制作。(点击放大)


从该表中可以看出,日本厂商在掌握技术主导权的情况不断进行着开发。另外,韩国厂商及韩国大学也有多篇论文发表,但内容多与基础性实验有关,致力于 FPD试制的事例并不多。也许可以说,这些均是在最近的FPD技术中日本占有统治地位的重要领域。笔者认为,要想使有机TFT实现实用化并在实际业务中获得成功,必须要同时满足两个条件,具体为:1)要在使用树脂底板的氧化物TFT开始量产之前启动有机TFT的生产;2)即便使用树脂底板的氧化物抢先实现了量产,也要在成本上确立优势地位,(在全印刷等领域)努力夺取份额。

韩国厂商对实现有机TFT的实用化并不积极,因为他们认为氧化物TFT的实用化可能性更高。希望日本企业能够抓住这一机会,拿出勇气努力达到上述条件,重新成为FPD业界的领头羊。(特约撰稿人:松枝 洋二郎,松枝咨询)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭