当前位置:首页 > 显示光电 > 显示光电
[导读]继100lm/W的发光效率之后,实现约130lm/W成了各厂商的下一个目标。日本新能源产业技术综合开发机构(NEDO)指出,这是因为如此将实现“普通荧光灯约2倍的发光效率”,同时其灯具效率与LED照明相当。 然而,

继100lm/W的发光效率之后,实现约130lm/W成了各厂商的下一个目标。日本新能源产业技术综合开发机构(NEDO)指出,这是因为如此将实现“普通荧光灯约2倍的发光效率”,同时其灯具效率与LED照明相当。 然而,130lm/W也不是终点。有机EL照明的发光效率还会进一步提高,以灯具效率来比较,预计在所有照明技术中有机EL照明将会是发光效率最高的技术。原美国伊士曼柯达公司的技术人员、现为南京第壹有机光电公司(First O-Lite)创始人兼首席技术官的田元生指出:“白色有机EL发光效率的理论极限为248lm/W,与白色LED光源的260lm/W相近。”就是说,在灯具效率上,有机EL照明可能是最高的。 实际发光效率也有望接近200lm/W。

IHS Electronics&Media公司预测,2019年200lm/W的有机EL照明面板将面世。美国能源部(DOE)也把190lm/W定为有机EL照明技术开发的最终目标。有机EL材料厂商美国环宇显示技术(UDC)虽然没有提及具体的实现时间,但表示 “作为有机EL照明的发光效率,180lm/W是比较现实的目标”。 效率提高接连取得突破 目标定得很高,但目前供货的有机EL照明面板的发光效率尚未达到。即便从全球来看,最高值也只是LG化学公司的60lm/W。日本国内产品中,柯尼卡美能达控股公司的面板“Symfos”的45lm/W为最高值,其他产品大多只有30lm/W左右。 产品之所以与今后的目标值有巨大差距,是因为最近取得了突破,能使发光效率飞跃性提高(图5)。尤其是以下3点取得了巨大进展:(1)提高从光提取层的光提取效率;(2)通过抑制表面等离子体共振*而提高光提取效率;(3)提高蓝色发光材料的效率。

*表面等离子体共振(SPR)=光与金属表面的电子结合,在类似于声波的纵波模式下共振的现象。 (1)和(2)的光提取效率,是指有机EL元件内部产生的光子中,可以提取到元件外部的光子比例。没有在这一点上下功夫的元件,所发的光中只有约20%可提取到外部。剩余约80%以热等形式散失。因此,光提取效率的提高是提高有机EL照明发光效率上的重要课题。

在光提取效率的提高上,日本金泽工业大学教授三上明义2009年发布了重要技术。主要内容是,如果在元件表面设置由折射率高达2左右的玻璃层和微透镜阵列组成的光提取层,就可以取得很好的效果。但高折射率玻璃存在价格高的大课题。 2012年,松下公司着眼于价格远远低于高折射率玻璃的聚萘二甲酸乙二醇酯(PEN)树脂折射率高达1.7~1.8的特点。并且还在SID 2012上发布,在PEN薄膜表面设置的微透镜阵列与玻璃基板之间加入空气可大幅提高光提取效率(图6)。

利用该技术,光提取效率提高到了原来约2倍的42%。发光面积25cm2的有机EL照明面板的发光效率达到87lm/W,1cm2的有机EL元件达到101lm/W,作为发白色光而且薄型的元件,全球首次超过了100lm/W(图1(b))注3 )。松下核心技术开发中心技术总监、大阪大学特聘教授菰田卓哉指出:“重点在于高折射率PEN与折射率为1的空气之间的巨大折射率差。” 注3) 松下在本届SID 2012上还宣布,通过设置与LED相同的半球状光提取层,发光面积为4mm2的有机EL元件的光提取效率达到了62%以上,实现了高达142lm/W的发光效率。 旭硝子公司(AGC)也曾在SID 2009和SID 2012上宣布,以自主方法开发出了价格相对较低但具备高折射率和光散射功能的玻璃,提高了光提取效率。 2009年发布的是在玻璃中加入气泡使光散射的技术。而2012年发布的技术,是用直径约2μm的陶瓷粒子取代难以控制直径的气泡添加到玻璃中,从而大幅降低了散射效果对波长的依赖注4 )。 注4) 旭硝子表示,在光散射用粒子的粒径小至数百nm时,可充分散射蓝色光的“瑞利散射”占主导,而在粒径为2μm左右时,对波长依赖性较小的“米氏散射”就会增强。 关于玻璃价格,旭硝子称“尚处于研究开发阶段,不便公开”,但可能会以一个战略性的价格设定开展业务。欧洲某玻璃厂商认为,“欧洲有几家有机EL元件厂商已经有意采用估计是旭硝子生产的、具有光散射效果的玻璃”。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭