当前位置:首页 > 显示光电 > 显示光电
[导读]一.IQE、LEE与EQE定义 首先给出内量子效率(IQE:Internal Quantum Efficiency )、光析出率(LEE:Light Extraction Efficiency)与外量子效率(EQE:External Quantum Efficiency)参数的定义与表达如下: IQE=单位时间内

一.IQE、LEE与EQE定义

首先给出内量子效率(IQE:Internal Quantum Efficiency )、光析出率(LEE:Light Extraction Efficiency)与外量子效率(EQE:External Quantum Efficiency)参数的定义与表达如下:

IQE=单位时间内有源层发射的光子数/单位时间内注入到有源层的电子子数=(Pint/(hv))/(I/e) (1.1)

LEE=单位时间内出射到空间的光子数/单位时间内从有源层内出射的光子数=(P/(hv))/=(Pint/(hv)) (1.2)

EQE=单位时间内出射到空间的光子数/单位时间内注入到有源层的电子子数=(P/(hv))/(I/e)=IQE*LEE (1.3)

其中,Pint是有源区内发射出的光功率,I为注入电流,P是发射到自由空间的光功率。内量子效率表征了LED有源区将注入的电能转化为光能的能力;光提取效率表征了LED有源区将产生的光能发射出去的能力;外量子效率表征了LED将电能转化为外界可见光能的能力,外量子效率越高则发光效率越高。对于理想LED器件,此三个参数均为1,即可将注入的电能完全转化为外界可见的光能。

二.影响IQE、LEE与EQE因素

外延层中的缺陷限制了LED的IQE。从发光二极管的工作原理我们得知,发光二极管是靠电子与空穴的辐射复合发光。但电子与空穴还存在另外一种复合机制——非辐射复合,见图1。当电子与空穴发生非辐射复合时,多余的能量以声子的形式传递给附近的原子,增加了原子的动能。宏观上讲,使得LED温度升高。

非辐射复合与外延层中的缺陷有关。当外延层中存在缺陷时,在缺陷处会形成复合中心,在该复合中心处更容易发生非辐射复合。缺陷密度越高,此种复合中心也越多,则会有更多的复合载流子发生非辐射复合。因此,在缺陷集中地区域,发光强度较弱。而对LED的LEE限制因素是材料的折射率

图1

当光线从高折射率的物质向低折射率的物质入射时,由Snell定律可知,若入射角过大,会发生全反射。发生全反射时,光线无法进入低折射率的物质,只有入射角度小于全反射临界角的光线才能低折射率的物质而发射出去时。因此,全反射降低了光提取效率,LED芯片内部的光线只有一部分能发射出去。(注:上述引自我一哥们的论文,他引自重呵呵)。

对于蓝宝石基GaN多量子阱结构LED,蓝宝石、GaN与空气的折射率分别为1.7、2.5与1,从而导致光子从GaN材料到空气的逃逸角(未封装的情况下)仅有23°,LEE仅有5%。

考虑电极以及封装等引起的损耗,EQE还需要在式1.3乘以一个小于1的系数。

三. 对IQE、LEE以及EQE的提高

基于上述,提高IQE方法主要集中在了提高GaN外延层质量上了。

而对LEE提高主要集中在了封装结构设计上了。

虽然根据Snell简单计算可以发现,即使在空气与GaN之间插入一层折射率介于GaN与空气之间的材料,亦不会提高LEE,但这层材料的形状可以改变LEE。

对IQE与LEE的提高自然可以提高EQE。

这里最想是说一下关于这三个参数提高率之间的关系。

对于一个量a而言,如果其值变化到了b,则其变化率

n(%)=(b-a)/a*100

b=a(1+n%)

我们不妨将上式用到式1.3上,来计算EQE的提高率与IQE与LEE提高率之间的关系。

假设IQE、LEE与EQE因某一措施分别提高了nIQE%,nLEE%,nEQE%

(1+nEQE%)EQE=(1+nIQE%)*IQE*(1+nIEE%)*LEE (3.1)

上式中IQE、LEE与EQE分别是采取措施前的LED指标值

将EQE=IQE*LEE引入有

nEQE%=nIQE%+nIEE%+nIQE%*nIEE% (3.2)

请记住这个式子,他说明只要某一个措施对IQE、LEE任何一个指标有提高都必会反应到EQE的提高上,且EQE提高率要比IQE与LEE二者提高率之和要大。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭