当前位置:首页 > 显示光电 > 显示光电
[导读]何谓Haptics?Haptics通过硬件与软件结合的触觉反馈机制,模拟人的真实触觉体验。由于人体感受机制复杂,对Haptics技术做清晰地分类并不容易,不过从感受输入的角度,大致可以分为对表皮,以及对肌肉中感受器刺激两类

何谓Haptics?

Haptics通过硬件与软件结合的触觉反馈机制,模拟人的真实触觉体验。由于人体感受机制复杂,对Haptics技术做清晰地分类并不容易,不过从感受输入的角度,大致可以分为对表皮,以及对肌肉中感受器刺激两类。

对普通人来说,前者其实并不陌生,手机上的“振动”就是一种表皮Haptics技术,不过许多人的误解也源于此——认为Haptics等同于 “振动”。事实上这项技术远非如此简单,只是因为振动技术容易实现,而且商业化产品成熟低价。振动其实只是Haptics领域的很小一部分,在许多场景下 (例如按键反馈),以振动作为触觉反馈的效果都不够好。

而与这两类输入对应的技术则五花八门,跨越的技术领域特别广泛。这也要求Haptics研究者需要了解许多领域的知识。以振动反馈为例,不但要 从电子工程和机械学角度知道如何最有效地利用电能、设计原件结构,还需从心理学角度了解人体对哪些频率的振动最为敏感。不过,这也是从事Haptics领 域研究的乐趣之一——尤其是对兴趣广泛的研究者来说。

生活中的诸多不便都可能藉由Haptics技术的引入得到解决。比如,人们在面对面交谈时,一方看手表的动作往往会引发对方不适,倘若手表镜面 应用了Haptics技术,只需手指轻轻一摸,便能知晓准确时间,这类生活中的窘境便迎刃而解。另外一个例子是网购:现实中,我们通过触摸感受材料的质地 与纹理,网购则无法实现这一点,随着Haptics技术的发展,如果平板电脑将来能模拟商品的真实纹理与质地,那么网购体验将会有革命性的提升。

虚拟触觉的“RGB三原色”

正如老话说,前景总是光明的,道路总是曲折的。Haptics是一个崭新的领域,难在建立研究的基准。我们类比视觉领域的既有研究成果,尝试将 纹理分解成几个独立变量。如同光的三原色一样,我们认为粗糙度、粘滞度、柔软度很可能是触觉的三个基本维度。在理解它们后,怎样用机器模拟,以不同比例混合,是否有可能根据它们定义所有的纹理呢?当前,Haptics的研究重点之一便是理解人们如何感受纹理。

粗糙度是我们研究最深,也是目前掌握最全面的技术,而粘滞度牵涉摩擦力,则相对难以实现。此外,由于三个维度往往分别单独采用不同的技术实现,而在完成最终产品时,还要考虑三者是否能够相互兼容,同时实现。

12下一页>>

在微软亚洲研究院,我们对如何在消费产品及可穿戴设备中应用Haptics技术的研究颇感兴趣,并且已开发了多种Haptics设备原型,能实 现键盘的触觉反馈、在玻璃触屏上实现类似物理按钮般的效果。以键盘为例,在对照实验中,在拥有精确触摸反馈的键盘上,其输入速度和正确率都要高出单纯利用 视觉反馈的键盘许多。而归类来说,这些原型中使用的Haptics技术包含以下两类。

一类是利用压电效应。将压电弯曲元件置于触摸表面之下,当它们受到高压产生振动时,带动表面也同时发生上下位移。

还可通过收缩表面,模拟按键咔嗒的感觉。其原理是将一块大的压电元件粘合在不锈钢片上,因为不锈钢片具有很强的面内刚度(in-plane stiffness),通过向压电元件施加高电压,元件的收缩将引起不锈钢片向一侧凹陷,在指尖产生类似轻触开关般的咔嗒体验。我们还能以超声波的频率(20-40kHZ)振动触摸表面,令一层薄薄的空气附于其上,这层空气能让指尖与表面的接触部分变得特别顺滑。

另一类是静电效应。在下面的示意图中,玻璃屏幕之上还附着有两层材料。红色的是导电层(例如ITO导电玻璃),其上是绝缘层。当电信号通过导电 层,手指皮肤中将产生极性相反的感应电荷,手指与屏幕的摩擦力将受到这些感应电荷相互作用力的影响。这些额外的作用力微小,我们只能体会到摩擦力发生了改 变,却并不能单独感受到它们的存在。配合对手指位置的精确感知,以及相应位置电信号强度的变化,将让我们产生接触表面的粗糙程度发生了改变的错觉。

由此也可见,Haptics是一种交互,不仅与“显示”有关,还与动作捕捉及感应紧密关联。在意识到这一点之后,最近有一些技术展示,实现了极高的位置分辨率,进而能显示非常细腻的纹理,实现灯芯绒般的手感。

从鲜为人知的术语,到被寄予希望的未来技术,Haptics正逐渐走向我们的日常工作和生活。Amara法则说,我们常常高估科技的短期影响 力,而又低估其长期影响力。在互联网世界逐渐三维化,并越来越和现实世界水乳 交融的过程里,人和机器的交互界面将不再受限于玻璃平面之下的二维世界法则, 会变得跟现实世界一样细腻丰富。要让梦想更快地实现,还有赖于研究者们更多的关注和科研突破。

关于作者

张虹(Hong Zhang)现任微软亚洲研究院高级研究员与人机交互组的经理。她目前也是美国普渡大学电子与计算机工程学院教授,机械工程学院客座教授,心理科学系客座教 授。她在美国麻省理工学院(MIT)获得硕士和博士学位;在上海交通大学获得学士学位。她曾担任美国麻省理工学院媒体实验室的研究员(Research Scientist at MIT Media Lab);曾获得McDonnell Visiting Fellowship 在英国牛津大学访问;作为 Visiting Associate Professor 在美国斯坦福大学计算机系访问和工作;并曾是上海交通大学生命科学与技术研究所的客座研究员。她在基于触摸的人机界面以及触摸感知技术的研究领域享有盛誉,已经发表一百多篇具有广泛影响的学术论文,并在多个国际学术期刊编委会中担任重要职务。

<<上一页12
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭