当前位置:首页 > 显示光电 > 显示光电
[导读]何谓Haptics?Haptics通过硬件与软件结合的触觉反馈机制,模拟人的真实触觉体验。由于人体感受机制复杂,对Haptics技术做清晰地分类并不容易,不过从感受输入的角度,大致可以分为对表皮,以及对肌肉中感受器刺激两类

何谓Haptics?

Haptics通过硬件与软件结合的触觉反馈机制,模拟人的真实触觉体验。由于人体感受机制复杂,对Haptics技术做清晰地分类并不容易,不过从感受输入的角度,大致可以分为对表皮,以及对肌肉中感受器刺激两类。

对普通人来说,前者其实并不陌生,手机上的“振动”就是一种表皮Haptics技术,不过许多人的误解也源于此——认为Haptics等同于 “振动”。事实上这项技术远非如此简单,只是因为振动技术容易实现,而且商业化产品成熟低价。振动其实只是Haptics领域的很小一部分,在许多场景下 (例如按键反馈),以振动作为触觉反馈的效果都不够好。

而与这两类输入对应的技术则五花八门,跨越的技术领域特别广泛。这也要求Haptics研究者需要了解许多领域的知识。以振动反馈为例,不但要 从电子工程和机械学角度知道如何最有效地利用电能、设计原件结构,还需从心理学角度了解人体对哪些频率的振动最为敏感。不过,这也是从事Haptics领 域研究的乐趣之一——尤其是对兴趣广泛的研究者来说。

生活中的诸多不便都可能藉由Haptics技术的引入得到解决。比如,人们在面对面交谈时,一方看手表的动作往往会引发对方不适,倘若手表镜面 应用了Haptics技术,只需手指轻轻一摸,便能知晓准确时间,这类生活中的窘境便迎刃而解。另外一个例子是网购:现实中,我们通过触摸感受材料的质地 与纹理,网购则无法实现这一点,随着Haptics技术的发展,如果平板电脑将来能模拟商品的真实纹理与质地,那么网购体验将会有革命性的提升。

虚拟触觉的“RGB三原色”

正如老话说,前景总是光明的,道路总是曲折的。Haptics是一个崭新的领域,难在建立研究的基准。我们类比视觉领域的既有研究成果,尝试将 纹理分解成几个独立变量。如同光的三原色一样,我们认为粗糙度、粘滞度、柔软度很可能是触觉的三个基本维度。在理解它们后,怎样用机器模拟,以不同比例混合,是否有可能根据它们定义所有的纹理呢?当前,Haptics的研究重点之一便是理解人们如何感受纹理。

粗糙度是我们研究最深,也是目前掌握最全面的技术,而粘滞度牵涉摩擦力,则相对难以实现。此外,由于三个维度往往分别单独采用不同的技术实现,而在完成最终产品时,还要考虑三者是否能够相互兼容,同时实现。

12下一页>>

在微软亚洲研究院,我们对如何在消费产品及可穿戴设备中应用Haptics技术的研究颇感兴趣,并且已开发了多种Haptics设备原型,能实 现键盘的触觉反馈、在玻璃触屏上实现类似物理按钮般的效果。以键盘为例,在对照实验中,在拥有精确触摸反馈的键盘上,其输入速度和正确率都要高出单纯利用 视觉反馈的键盘许多。而归类来说,这些原型中使用的Haptics技术包含以下两类。

一类是利用压电效应。将压电弯曲元件置于触摸表面之下,当它们受到高压产生振动时,带动表面也同时发生上下位移。

还可通过收缩表面,模拟按键咔嗒的感觉。其原理是将一块大的压电元件粘合在不锈钢片上,因为不锈钢片具有很强的面内刚度(in-plane stiffness),通过向压电元件施加高电压,元件的收缩将引起不锈钢片向一侧凹陷,在指尖产生类似轻触开关般的咔嗒体验。我们还能以超声波的频率(20-40kHZ)振动触摸表面,令一层薄薄的空气附于其上,这层空气能让指尖与表面的接触部分变得特别顺滑。

另一类是静电效应。在下面的示意图中,玻璃屏幕之上还附着有两层材料。红色的是导电层(例如ITO导电玻璃),其上是绝缘层。当电信号通过导电 层,手指皮肤中将产生极性相反的感应电荷,手指与屏幕的摩擦力将受到这些感应电荷相互作用力的影响。这些额外的作用力微小,我们只能体会到摩擦力发生了改 变,却并不能单独感受到它们的存在。配合对手指位置的精确感知,以及相应位置电信号强度的变化,将让我们产生接触表面的粗糙程度发生了改变的错觉。

由此也可见,Haptics是一种交互,不仅与“显示”有关,还与动作捕捉及感应紧密关联。在意识到这一点之后,最近有一些技术展示,实现了极高的位置分辨率,进而能显示非常细腻的纹理,实现灯芯绒般的手感。

从鲜为人知的术语,到被寄予希望的未来技术,Haptics正逐渐走向我们的日常工作和生活。Amara法则说,我们常常高估科技的短期影响 力,而又低估其长期影响力。在互联网世界逐渐三维化,并越来越和现实世界水乳 交融的过程里,人和机器的交互界面将不再受限于玻璃平面之下的二维世界法则, 会变得跟现实世界一样细腻丰富。要让梦想更快地实现,还有赖于研究者们更多的关注和科研突破。

关于作者

张虹(Hong Zhang)现任微软亚洲研究院高级研究员与人机交互组的经理。她目前也是美国普渡大学电子与计算机工程学院教授,机械工程学院客座教授,心理科学系客座教 授。她在美国麻省理工学院(MIT)获得硕士和博士学位;在上海交通大学获得学士学位。她曾担任美国麻省理工学院媒体实验室的研究员(Research Scientist at MIT Media Lab);曾获得McDonnell Visiting Fellowship 在英国牛津大学访问;作为 Visiting Associate Professor 在美国斯坦福大学计算机系访问和工作;并曾是上海交通大学生命科学与技术研究所的客座研究员。她在基于触摸的人机界面以及触摸感知技术的研究领域享有盛誉,已经发表一百多篇具有广泛影响的学术论文,并在多个国际学术期刊编委会中担任重要职务。

<<上一页12
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

近期,运动与控制技术的先行者——派克汉尼汾公司宣布推出一款功能强大的测量设备Service Master COMPACT,为行走机械和工业液压应用提供实时监测和诊断服务。产品采用坚固的IP65防护级外壳及耐油性橡胶保护层...

关键字: 触摸屏 触感键盘 传感器

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

德国斯图加特和加利福尼亚州普莱森顿2024年4月16日 /美通社/ -- 全球高科技设施设计、工程和交付的领先企业Exyte宣布,计划收购全球领先的安装服务、设备和技术设施管理提供商—Kinetics集团(简称"Kine...

关键字: NET TI TE IC

国科微凭借雄厚的研发实力和在AI领域的创新成就,旗下智能视觉芯片GK7205V500系列荣获2024年度中国IC设计成就奖之“年度最佳AI芯片”。

关键字: IC AI 芯片

电容式触摸屏又称电容触摸屏,是一种生长在电子行业中的新型非接触式触摸技术,广泛应用在人机交互界面,实现与人机之间信息传递,它带动了科技发展,改变着日常生活。

关键字: 电容式 触摸屏 交互界面

Holtek新推出BS21xC-x系列Touch Key周边IC,主要特色为高性价比。相较BS81xC-x系列产品维持一样良好的抗电源噪声干扰能力(CS)、应用不须额外元件、低功耗、具备开发便利性高等特点,适用于各类触控...

关键字: 触控电子产品 IC

现如今,越来越多的半导体厂商开始重视低功耗设计,以不断提升产品性能和优化应用方案来满足更多的市场需求。作为行业的引领者,PI在该领域内必然不会缺席,其最近推出的InnoMux-2™系列单级独立稳压的多路输出离线式电源IC...

关键字: PI IC 电源开关

近日,功率变换IC领域的全球领导者Power Integrations推出了一款InnoSwitch™5-Pro系列高效率、可数字控制的反激式开关IC,旨在为业界提供一种更高功率、更低成本的快充解决方案。

关键字: PI IC 电源开关
关闭
关闭