当前位置:首页 > 智能硬件 > 半导体
[导读]【导读】FinFET技术是电子行业的下一代前沿技术,是一种全新的新型的多门3D晶体管。和传统的平面型晶体管相比,FinFET器件可以提供更显著的功耗和性能上的优势。英特尔已经在22nm上使用了称为“三栅”的FinFET技术,

【导读】FinFET技术是电子行业的下一代前沿技术,是一种全新的新型的多门3D晶体管。和传统的平面型晶体管相比,FinFET器件可以提供更显著的功耗和性能上的优势。英特尔已经在22nm上使用了称为“三栅”的FinFET技术,同时许多晶圆厂也正在准备16纳米或14纳米的FinFET工艺。虽然该技术具有巨大的优势,但也带来了一些新的设计挑战,它的成功,将需要大量的研发和整个半导体设计生态系统的深层次合作。

摘要:  FinFET技术是电子行业的下一代前沿技术,是一种全新的新型的多门3D晶体管。和传统的平面型晶体管相比,FinFET器件可以提供更显著的功耗和性能上的优势。英特尔已经在22nm上使用了称为“三栅”的FinFET技术,同时许多晶圆厂也正在准备16纳米或14纳米的FinFET工艺。虽然该技术具有巨大的优势,但也带来了一些新的设计挑战,它的成功,将需要大量的研发和整个半导体设计生态系统的深层次合作。

关键字:  晶体管控制电流驱动器

FinFET技术是电子行业的下一代前沿技术,是一种全新的新型的多门3D晶体管。和传统的平面型晶体管相比,FinFET器件可以提供更显著的功耗和性能上的优势。英特尔已经在22nm上使用了称为“三栅”的FinFET技术,同时许多晶圆厂也正在准备16纳米或14纳米的FinFET工艺。虽然该技术具有巨大的优势,但也带来了一些新的设计挑战,它的成功,将需要大量的研发和整个半导体设计生态系统的深层次合作。

FinFET器件是场效应晶体管(FET),名字的由来是因为晶体管的栅极环绕着晶体管的高架通道,这称之为“鳍”。比起平面晶体管,这种方法提供了更多的控制电流,并且同时降低漏电和动态功耗。 比起28纳米工艺,16纳米/14纳米 FinFET器件的进程可以提高40-50%性能,或减少50%的功耗。一些晶圆厂会直接在16纳米/14纳米上采用FinFET技术,而一些晶圆厂为了更容易地整合FinFET技术,会在高层金属上保持在20nm的工艺。

那么20纳米的平面型晶体管还有市场价值么?这是一个很好的问题,就在此时,在2013年初,20nm的平面型晶体管技术将会全面投入生产而16纳米/14纳米 FinFET器件的量产还需要一到两年,并且还有许多关于FinFET器件的成本和收益的未知变数。但是随着时间的推移,特别是伴随着下一代移动消费电子设备发展,我们有理由更加期待FinFET技术。

和其他新技术一样,FinFET器件设计也提出了一些挑战,特别是对于定制/模拟设计。一个挑战被称为“宽度量化”,它是因为FinFET元件最好是作为常规结构放置在一个网格。标准单元设计人员可以更改的平面晶体管的宽度,但不能改变鳍的高度或宽度的,所以最好的方式来提高驱动器的强度是增加鳍的个数。增加的个数必须为整数, 你不能添加四分之三的鳍。

另一个挑战来自三维技术本身,因为三维预示着更多的电阻的数目(R)和电容(C)的寄生效应,所以提取和建模也相应困难很多。设计者不能再只是为晶体管的长度和宽度建模,晶体管内的Rs和Cs,包括本地互连,鳍和栅级,对晶体管的行为建模都是至关重要的。还有一个问题是层上的电阻。 20纳米的工艺在金属1层下增加了一个局部互连,其电阻率分布是不均匀的,并且依赖于通孔被放置的位置。另外,上层金属层和下层金属层的电阻率差异可能会达到百倍数量级。

还有一些挑战,不是来自于FinFET自身,而是来至于16nm及14nm上更小的几何尺寸。一个是双重图形,这个是20nm及以下工艺上为了正确光蚀/刻蚀必须要有的技术。比起单次掩模,它需要额外的mask,并且需要把图形分解,标上不同的颜色,并且实现在不同的mask上。布局依赖效应(LDE)的发生是因为当器件放置在靠近其他单元或者器件时,其时序和功耗将会受影响。还有一个挑战就是电迁移变得更加的显著,当随着几何尺寸的缩小。

如前所述,上述问题将影响影响定制/模拟设计。如果数字设计工程师能够利用自动化的,支持FinFET器件的工具和支持FinFET的单元库,他或她将发现,其工作上最大的变化将是单元库:更好的功耗和性能特性!但是,数字设计工程师也会发现新的和更复杂的设计规则,双图形着色的要求,和更加严格的单元和pin位置的限制。最后,有些SoC设计人员还会被要求来设计和验证上百万门级别的芯片。设计师将需要在更高的抽象层次上工作和大量重复使用一些硅IP。

EDA产业在研发上花费了大量的钱,以解决高级节点上设计的挑战。事实上,我们预期,EDA行业为了20纳米,16纳米和14纳米的总研发费用可能会达到十二亿美金到十六亿美金。从FinFET器件的角度来看,例如,提取工具必须得到提高,以便能处理Rs和Cs从而更好预测晶体管的性能。这些Rs和Cs不能等待芯片成型后分析,他们需要在设计周期的早期进行,所以电路工程师和版图工程师不得不工作得更加紧密,这也是方法学上很大的一个变化。

每个物理设计工具都必须能够处理几百条为了16nm/14nm FinFET技术而带来的新的设计规则。这包括布局,布线,优化,提取和物理验证。单元库也需要利用这些工具进行优化。所以一个整合了的先进节点的解决方案,将会使包括定制/模拟和数字设计的任务变得更加容易。

EDA供应商也是包括晶圆代工厂和IP供应商在内的垂直合作其中的一部分。从EDA和IP开发人员的反馈会影响进程的发展,这反过来又提出了新的要求的工具和IP。例如,在2012年,Cadence公司,ARM和IBM之间三方合作就产生了第一个14NM的FinFET器件的测试芯片。

16nm/14nm的FinFET技术将是一个小众技术,或进入IC设计的主流?历史证明,当新的创新出现,人们弄清楚如何使用它们来创新,往往会带来意想不到的价值。FinFET技术将启用下一个大的飞跃,为计算机,通信和所有类型的消费电子设备带来裨益。这就是为什么Cadence公司坚信FinFET技术将为电子行业开创一个新纪元,这也是为什么我们致力于为整个行业推进这项技术。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭